Cho \(tanx=\frac{5}{3}\) Tính \(P=\frac{2cosx-3sinx}{3cosx+4sinx}\)
A, sin2 x- 4sinx +3=0
B, 2cos2x- cosx-1=0
C, 3sin2x- 2cosx +2=0
D, 3cosx+ cos2x -cos3x +1=2sinx.sin2x
E, tan2 x+(\(\sqrt{3}\) +1)tanx-\(\sqrt{3}\)=0
F, \(\dfrac{\sqrt{3}}{sin^2x}\)=3cotx + \(\sqrt{3}\)
a, \(sin^2x-4sinx+3=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(sinx-3\right)=0\)
\(\Leftrightarrow sinx=1\)
\(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)
b, \(2cos^2-cosx-1=0\)
\(\Leftrightarrow\left(cosx-1\right)\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)
c, \(3sin^2x-2cosx+2=0\)
\(\Leftrightarrow3-3sin^2x+2cosx-5=0\)
\(\Leftrightarrow3cos^2x+2cosx-5=0\)
\(\Leftrightarrow\left(cosx-1\right)\left(3cosx+5\right)=0\)
\(\Leftrightarrow cosx=1\)
\(\Leftrightarrow x=k2\pi\)
cho tanx = -2 tính H = \(\dfrac{sin^3x+5cos^3x}{3sinx-2cosx}\)
tan x=-2
=>sin x/cosx=-2
=>sin x=-2*cosx
\(1+tan^2x=\dfrac{1}{cos^2x}\)
=>\(\dfrac{1}{cos^2x}=1+2=3\)
=>\(cos^2x=\dfrac{1}{3}\)
\(H=\dfrac{sin^3x+5\cdot cos^3x}{3\cdot sinx-2\cdot cosx}\)
\(=\dfrac{\left(-2\cdot cosx\right)^3+5\cdot cos^3x}{3\cdot\left(-2\right)\cdot cosx-2\cdot cosx}\)
\(=\dfrac{-8\cdot cos^3x+5\cdot cos^3x}{-6\cdot cos-2\cdot cosx}=\dfrac{-3\cdot cos^3x}{-8\cdot cosx}=\dfrac{3}{8}\cdot cos^2x\)
=3/8*1/3
=1/8
Cho tanx=2. Giá trị của biểu thức P = 4 sin x + 5 cos x 2 sin x - 3 cos x là
A. 2
B. 13
C. -9
D. -2
Cho x thỏa mãn điều kiện tan x = 2 . Tính giá trị của biểu thức T = 3 sin x − 2 cos x sin x + 3 cos x
A. T = 1 4
B. T = 1 5
C. T = 4 5
D. T = − 3 4
Cho x thỏa mãn điều kiện tan x = 2 . Tính giá trị của biểu thức T = 3 sin x - 2 cos x sin x + 3 cos x
A. T = 1 4
B. T = 1 5
C. T = 4 5
D. T = - 3 4
Cho x thỏa mãn điều kiện tanx = 2. Tính giá trị của biểu thức
T = 3 sin x - 2 cos x sin x + 3 cos x
A. T = 1 4
B. T = 1 5
C. T = 4 5
D. - 3 4
Giải các phương trình :
a, 3sinx -2cosx =2
b, cosx +4sinx=-1
c, \(\sqrt{3}cosx+4sinx-\sqrt{3}\)=0
d, 2sinx-5cosx=5
a/
\(\Leftrightarrow\frac{3}{\sqrt{13}}sinx-\frac{2}{\sqrt{13}}cosx=\frac{2}{\sqrt{13}}\)
Đặt \(cosa=\frac{3}{\sqrt{13}}\) với \(0< a< \pi\)
\(\Rightarrow sinx.cosa-cosx.sina=sina\)
\(\Leftrightarrow sin\left(x-a\right)=sina\)
\(\Rightarrow\left[{}\begin{matrix}x-a=a+k2\pi\\x-a=\pi-a+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2a+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow cosx.\frac{1}{\sqrt{17}}+sinx.\frac{4}{\sqrt{17}}=-\frac{1}{\sqrt{17}}\)
Đặt \(cosa=\frac{1}{\sqrt{17}}\) với \(0< a< \pi\)
\(\Rightarrow cosx.cosa+sinx.sina=-cosa\)
\(\Leftrightarrow cos\left(x-a\right)=cos\left(\pi-a\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-a=\pi-a+k2\pi\\x-a=a-\pi+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=2a-\pi+k2\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow\frac{\sqrt{3}}{\sqrt{19}}cosx+\frac{4}{\sqrt{19}}sinx=\frac{\sqrt{3}}{\sqrt{19}}\)
Đặt \(cosa=\frac{\sqrt{3}}{\sqrt{19}}\) với \(0< a< \pi\)
\(\Rightarrow cosx.cosa+sinx.sina=cosa\)
\(\Leftrightarrow cos\left(x-a\right)=cosa\)
\(\Rightarrow\left[{}\begin{matrix}x-a=a+k2\pi\\x-a=-a+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2a+k2\pi\\x=k2\pi\end{matrix}\right.\)
Bài 1 Cho PT cos7x - \(\sqrt{3}sin7x\)= \(-\sqrt{2}\)
a) Giải PT
b) Tìm nghiệm của PT thỏa mãn ; \(\frac{2\pi}{5}\)<x<\(\frac{6\pi}{7}\)
Bài 2 Tìm GTLN GTNN của hàm số
a) y= sin3x + cos3x
b) y= cos2x + sinx -1
c) y= 3cos4x -1
d) y= \(\frac{2sinx+cosx+1}{sinx-2cosx+3}\)
e) y= (3cosx - 4sinx)( 4cosx - 3sinx)
MONG MỌI NGƯỜI GIÚP ĐỠ Ạ . MÌNH LÀM MÃI KO RA. CẢM ƠN NHIỀU NHIỀU Ạ :))
1) a) cos7x - √3 sin7x = -√2 (a = 1; b = -√3; c = -√2)
=> a^2 + b^2 =4 > c^2 = 2
Chia 2 vế pt (*) cho \(\sqrt{a^2+b^2}=2\) ta đc:
<=> 1/2cos7x - √3/2 sin7x = -√2/2
<=> sin(π/6)cos7x - cos(π/6)sin7x = sin(-π/4)
<=> sin(π/6 - 7x) = sin(-π/4)
<=> π/6 - 7x = -π/4 + k2π
hoặc (k∈Z)
π/6 - 7x = π + π/4 + k2π
<=> x = 5π/84 + k2π/7
hoặc (k∈Z)
x = -13π/84 + k2π/7
1) b) Ta có:
* 2π/5 < x < 6π/7
<=> 2π/5 < 5π/84 + k2π/7 < 6π/7
<=> 143π/420 < k2π/7 < 67π/84
<=> 143/120 < k < 67/24
=> k ϵ {2}
=> x = 53π/84
* 2π/5 < x < 6π/7
<=> 2π/5 < -13π/84 + k2π/7 < 6π/7
<=> 233/120 < k < 85/24
=> k ϵ {2; 3}
=> x = 5π/12 ; x = 59π/84
Vậy có tất cả 3 nghiệm thỏa mãn (2π/5;6π/7) là x = 53π/84; x = 5π/12 ; x = 59π/84.
biết tanx=2 và M=\(\dfrac{2sinx-3cosx}{4sinx+7cosx}\).Giá trị M bằng?
\(tanx=\dfrac{sinx}{cosx}\)
\(\Rightarrow M=\dfrac{2sinx}{\dfrac{cosx}{\dfrac{4sinx}{cosx}}}-\dfrac{3cosx}{\dfrac{cosx}{\dfrac{7cosx}{cosx}}}\)
\(M=\dfrac{2tanx-3}{4tanx+7}\)
\(M=\dfrac{2.\left(-2\right)-3}{4.2+7}\)
\(M=\dfrac{1}{15}\)