Giải phương trình sau:
\(\left(1+x+x^2+x^3\right)\left(1+x+x^2+x^3+...+x^8+x^9\right)=\left(1+x+x^2+...+x^6\right)^2\)
Đừng có mà phá ngoặc, tớ khó hiểu lắm :((((
1. giải phương trình tích:
a) \(\left(x+3\right)\left(x^2+2021\right)=0\)
\(\)2. giải các phương trình sau bằng cách đưa về phương trình tích:
b) \(x\left(x-3\right)+3\left(x-3\right)=0\)
c) \(\left(x^2-9\right)+\left(x+3\right)\left(3-2x\right)=0\)
d) \(3x^2+3x=0\)
e) \(x^2-4x+4=4\)
`a,(x+3)(x^2+2021)=0`
`x^2+2021>=2021>0`
`=>x+3=0`
`=>x=-3`
`2,x(x-3)+3(x-3)=0`
`=>(x-3)(x+3)=0`
`=>x=+-3`
`b,x^2-9+(x+3)(3-2x)=0`
`=>(x-3)(x+3)+(x+3)(3-2x)=0`
`=>(x+3)(-x)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$
`d,3x^2+3x=0`
`=>3x(x+1)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$
`e,x^2-4x+4=4`
`=>x^2-4x=0`
`=>x(x-4)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$
1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)
=> S={-3}
Bài 1:
a) Ta có: \(\left(x+3\right)\left(x^2+2021\right)=0\)
mà \(x^2+2021>0\forall x\)
nên x+3=0
hay x=-3
Vậy: S={-3}
Bài 2:
b) Ta có: \(x\left(x-3\right)+3\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy: S={3;-3}
Giải các phương trình sau:
1. \(a,\dfrac{6}{x-1}-\dfrac{4}{x-3}=\dfrac{8}{2x-6}\)
\(b,\dfrac{1}{x-2}+\dfrac{5}{x+1}=\dfrac{3}{2-x}\)
\(c,\dfrac{3x}{x-2}-\dfrac{x}{x-5}=\dfrac{3x}{\left(x-2\right)\left(5-x\right)}\)
2. \(a,\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
\(b,2x^2-6x+1\)
1a.
ĐKXĐ: \(x\ne\left\{1;3\right\}\)
\(\Leftrightarrow\dfrac{6}{x-1}=\dfrac{4}{x-3}+\dfrac{4}{x-3}\)
\(\Leftrightarrow\dfrac{3}{x-1}=\dfrac{4}{x-3}\Leftrightarrow3\left(x-3\right)=4\left(x-1\right)\)
\(\Leftrightarrow3x-9=4x-4\Rightarrow x=-5\)
b.
ĐKXĐ: \(x\ne\left\{-1;2\right\}\)
\(\Leftrightarrow\dfrac{5}{x+1}=\dfrac{3}{2-x}+\dfrac{1}{2-x}\)
\(\Leftrightarrow\dfrac{5}{x+1}=\dfrac{4}{2-x}\Leftrightarrow5\left(2-x\right)=4\left(x+1\right)\)
\(\Leftrightarrow10-2x=4x+4\Leftrightarrow6x=6\Rightarrow x=1\)
1c.
ĐKXĐ: \(x\ne\left\{2;5\right\}\)
\(\Leftrightarrow\dfrac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}=\dfrac{-3x}{\left(x-2\right)\left(x-5\right)}\)
\(\Leftrightarrow3x\left(x-5\right)-x\left(x-2\right)=-3x\)
\(\Leftrightarrow2x^2-10x=0\Leftrightarrow2x\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=5\left(loại\right)\end{matrix}\right.\)
2a.
\(\Leftrightarrow-4x^2-5x+6=x^2+4x+4\)
\(\Leftrightarrow5x^2+9x-2=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{5}\end{matrix}\right.\)
2b.
\(2x^2-6x+1=0\Rightarrow x=\dfrac{3\pm\sqrt{7}}{2}\)
Giải phương trình sau:
\(\sqrt{x^2-4x-8}+\sqrt{x^2+2\left(1-\sqrt{3}\right)x+8}+\sqrt{x^2+2\left(1+\sqrt{3}\right)x+8}=6\sqrt{2}\).
Do có quá ít câu hỏi nên bạn nào trả lời được, mình sẽ xóa khỏi mục "Câu hỏi hay" nhé!
Giải các bất phương trình sau :
\(a.4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)
\(b.\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)
c. \(\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)
\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)
\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)
\(\Leftrightarrow-28x+37\ge12\)
\(\Leftrightarrow-28x\ge12-37\)
\(\Leftrightarrow-28x\ge-25\)
\(\Leftrightarrow x\le\dfrac{25}{28}\)
Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)
b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)
\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)
\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)
\(\Leftrightarrow-6x\ge30\)
\(\Leftrightarrow x\le-5\)
Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)
\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)
\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)
\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)
\(\Leftrightarrow-11x+37< 0\)
\(\Leftrightarrow-11x< -37\)
\(\Leftrightarrow x>\dfrac{37}{11}\)
vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)
Tính x thuộc N
\(a,\left(x-9\right)^4=\left(x-9\right)^7\)
\(b,\left(3x-15\right)^{10}=\left(3x-15\right)^{15}\)
\(c,\left(x-8\right)^3=\left(x-8\right)^6\)
cho mik bài giải nhé đừng cho mỗi đáp án thế khó làm lắm
a, `(x-9)^4=(x-9)^7`
`(x-9)^4-(x-9)^7=0`
`(x-9)^4 . [(1-(x-9)^3]=0`
TH1: `(x-9)^4=0`
`x-9=0`
`x=9`
TH2: `1-(x-9)^3=0`
`(x-9)^3=1^3`
`x-9=1`
`x=10`
b, `(3x-15)^10=(3x-15)^15`
`(3x-15)^10 . [1-(3x-15)^5]=0`
TH1: `(3x-15)^10=0`
`3x-15=0`
`x=5`
TH2: `1-(3x-15)^5=0`
`(3x-15)^5=1^5`
`3x-15=1`
`x=16/3` (Loại)
c, `(x-8)^3=(x-8)^6`
`(x-8)^3 .[1-(x-8)^3]=0`
TH1: `(x-8)^3=0`
`x=8`
TH2: `1-(x-8)^3=0`
`x-8=1`
`x=9`
\(a,\left(x-9\right)^4=\left(x-9\right)^7\)
\(\Rightarrow\left(x-9\right)=\left(x-9\right)^2\)
\(\Rightarrow\left(x-9\right)^3\)
\(\Rightarrow x=9\)
\(\left(3x-15\right)^{10}=\left(3x-15\right)^{15}\)
\(\Rightarrow\left(3x-15\right)=\left(3x-15\right)^5\)
\(\Rightarrow\left(3x-15\right)^6\)
\(\Rightarrow3x-15=0\)
\(3x=15\)
\(x=15:3\)
\(x=...\)
Mấy phần kia bn có thể áp dụng gần giống ntn !
tính đạo hàm
a) \(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}\)
b) \(y=x+3+\dfrac{4}{x+3}\) giải phương trình y'=0
c) \(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\) tính y'(-1)
d) \(y=x-2+\dfrac{9}{x-2}\) giải phương trình y'=0
a:
ĐKXĐ: \(x\notin\left\{\dfrac{3}{2};1\right\}\)
\(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}=\dfrac{x^2-4x+4}{2x^2-2x-3x+3}\)
=>\(y=\dfrac{x^2-4x+4}{2x^2-5x+3}\)
=>\(y'=\dfrac{\left(x^2-4x+4\right)'\left(2x^2-5x+3\right)-\left(x^2-4x+4\right)\left(2x^2-5x+3\right)'}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{\left(2x-4\right)\left(2x^2-5x+3\right)-\left(2x-5\right)\left(x^2-4x+4\right)}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{4x^3-10x^2+6x-8x^2+20x-12-2x^3+8x^2-8x+5x^2-20x+20}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{2x^3-5x^2-2x+8}{\left(2x^2-5x+3\right)^2}\)
b:
ĐKXĐ: x<>-3
\(y=\left(x+3\right)+\dfrac{4}{x+3}\)
=>\(y'=\left(x+3+\dfrac{4}{x+3}\right)'=1+\left(\dfrac{4}{x+3}\right)'\)
\(=1+\dfrac{4'\left(x+3\right)-4\left(x+3\right)'}{\left(x+3\right)^2}\)
=>\(y'=1+\dfrac{-4}{\left(x+3\right)^2}=\dfrac{\left(x+3\right)^2-4}{\left(x+3\right)^2}\)
y'=0
=>\(\left(x+3\right)^2-4=0\)
=>\(\left(x+3+2\right)\left(x+3-2\right)=0\)
=>(x+5)(x+1)=0
=>x=-5 hoặc x=-1
c:
ĐKXĐ: x<>-2
\(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\)
=>\(y=\dfrac{5x^2+5x-x-1}{x+2}=\dfrac{5x^2+4x-1}{x+2}\)
=>\(y'=\dfrac{\left(5x^2+4x-1\right)'\left(x+2\right)-\left(5x^2+4x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{\left(5x+4\right)\left(x+2\right)-\left(5x^2+4x-1\right)}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{5x^2+10x+4x+8-5x^2-4x+1}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{10x+9}{\left(x+2\right)^2}\)
\(y'\left(-1\right)=\dfrac{10\cdot\left(-1\right)+9}{\left(-1+2\right)^2}=\dfrac{-1}{1}=-1\)
d:
ĐKXĐ: x<>2
\(y=x-2+\dfrac{9}{x-2}\)
=>\(y'=\left(x-2+\dfrac{9}{x-2}\right)'=1+\left(\dfrac{9}{x-2}\right)'\)
\(=1+\dfrac{9'\left(x-2\right)-9\left(x-2\right)'}{\left(x-2\right)^2}\)
=>\(y'=1+\dfrac{-9}{\left(x-2\right)^2}=\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}\)
y'=0
=>\(\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}=0\)
=>\(\left(x-2\right)^2-9=0\)
=>(x-2-3)(x-2+3)=0
=>(x-5)(x+1)=0
=>x=5 hoặc x=-1
giải bất phương trình sau
1, 2( x+3) > 5 ( x-1) +2
2, \(x^2-x\left(x+2\right)>3x-10\)
3, \(x\left(x-5\right)\)≤ \(\left(x+1\right)^2\)
4, 15 - 2 (x-7) <2 (x-3) -6
1) \(2\left(x+3\right)>5\left(x-1\right)+2\Leftrightarrow2x+6>5x-5+2\Leftrightarrow3x>9\Leftrightarrow x>3\)
2) \(x^2-x\left(x+2\right)>3x-10\)
\(\Leftrightarrow x^2-x^2-2x>3x-10\Leftrightarrow5x< 10\Leftrightarrow x< 2\)
3) \(x\left(x-5\right)< \left(x+1\right)^2\)
\(\Leftrightarrow x^2-5x< x^2+2x+1\Leftrightarrow7x>-1\Leftrightarrow x>-\dfrac{1}{7}\)
4) \(15-2\left(x-7\right)< 2\left(x-3\right)-6\)
\(\Leftrightarrow15-2x+14< 2x-6-6\Leftrightarrow4x>41\Leftrightarrow x>\dfrac{41}{4}\)
1: Ta có: \(2\left(x+3\right)>5\left(x-1\right)+2\)
\(\Leftrightarrow2x+6>5x-5+2\)
\(\Leftrightarrow-3x>-9\)
hay x<3
2: Ta có: \(x^2-x\left(x+2\right)>3x-10\)
\(\Leftrightarrow x^2-x^2-2x>3x-10\)
\(\Leftrightarrow-5x>-10\)
hay x<2
3: Ta có: \(x\left(x-5\right)\le\left(x+1\right)^2\)
\(\Leftrightarrow x^2-5x-x^2-2x-1\ge0\)
\(\Leftrightarrow-7x\ge1\)
hay \(x\le-\dfrac{1}{7}\)
4: Ta có: \(15-2\left(x-7\right)< 2\left(x-3\right)-6\)
\(\Leftrightarrow15-2x+14< 2x-6-6\)
\(\Leftrightarrow-4x< -12-29=-41\)
hay \(x>\dfrac{41}{4}\)
giải phương trình
1)\(2\left(x-3\right)+1=2\left(x+1\right)-9\)
2)\(\dfrac{5-x}{2}=\dfrac{3x-4}{6}\)
3) \(\left(x-1\right)^2+\left(x+2\right)\left(x-2\right)=\left(2x+1\right)\left(x-3\right)\)
4)\(\left(x+5\right)\left(x-1\right)-\left(x+1\right)\left(x+2\right)=1\)
5) \(\dfrac{6x-1}{15}-\dfrac{x}{5}=\dfrac{2x}{3}\)
6)\(\dfrac{5\left(x-2\right)}{2}-\dfrac{x+5}{3}=1-\dfrac{4\left(x-3\right)}{5}\)
\(1,2\left(x-3\right)+1=2\left(x+1\right)-9\\ \Rightarrow2x-6+1=2x+2-9\\ \Rightarrow2x-5=2x-7\\ \Rightarrow-2=0\left(vô.lí\right)\)
\(2,\dfrac{5-x}{2}=\dfrac{3x-4}{6}\\ \Rightarrow30-6x=6x-8\\ \Rightarrow12x=38\\ \Rightarrow x=\dfrac{19}{6}\)
\(3,\left(x-1\right)^2+\left(x+2\right)\left(x-2\right)=\left(2x+1\right)\left(x-3\right)\\ \Rightarrow x^2-2x+1+x^2-4=2x^2-6x+x-3\\ \Rightarrow2x^2-2x-3=2x^2-5x-3\\ \Rightarrow3x=0\\ \Rightarrow x=0\)
\(4,\left(x+5\right)\left(x-1\right)-\left(x+1\right)\left(x+2\right)=1\\ \Rightarrow x^2+5x-x-5-x^2-2x-x-2=1\\ \\ \Rightarrow x-7=1\\ \Rightarrow x=8\)
\(5,\dfrac{6x-1}{15}-\dfrac{x}{5}=\dfrac{2x}{3}\\ \Rightarrow\dfrac{6x-1}{15}-\dfrac{3x}{15}=\dfrac{10x}{15}\\ \Rightarrow6x-1-3x=10x\\ \Rightarrow3x-1=10x\\ \Rightarrow7x=-1\\ \Rightarrow x=\dfrac{-1}{7}\)
\(6,\dfrac{5\left(x-2\right)}{2}-\dfrac{x+5}{3}=1-\dfrac{4\left(x-3\right)}{5}\\ \Rightarrow\dfrac{75\left(x-2\right)}{30}-\dfrac{10\left(x+5\right)}{30}=\dfrac{30}{30}-\dfrac{24\left(x-3\right)}{30}\\ \Rightarrow75\left(x-2\right)-10\left(x+5\right)=30-24\left(x-3\right)\\ \Rightarrow75x-150-10x-50=30-24x+72\\ \Rightarrow65x-200=102-24x\\ \Rightarrow89x=302\\ \Rightarrow x=\dfrac{320}{89}\)
Giải các phương trình sau:
a \(\left(x+2\right)\left(x+\text{4}\right)\left(x+6\right)\left(x+8\right)+16=0\)
b \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
c \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=0\)
d \(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)
b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)
\(\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)