Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 12 2019 lúc 7:38

a, Với m= 2, ta có 2 x 2 − 4 x + 2 = 0 ⇔ x = 1                                              

b) Phương trình (1) có hai nghiệm  x 1 , x 2  khi và chỉ khi  Δ ' ≥ 0 ⇔ − 2 ≤ m ≤ 2

Theo Vi-et , ta có:  x 1 + x 2 = m          1 x 1 . x 2 = m 2 − 2 2    2

Theo đề bài ta có:  A = 2 x 1 x 2 − x 1 − x 2 − 4 = m 2 − 2 − m − 4 = m − 3 m + 2

Do  − 2 ≤ m ≤ 2  nên  m + 2 ≥ 0 m − 3 ≤ 0 . Suy ra  A = m + 2 − m + 3 = − m 2 + m + 6 = − m − 1 2 2 + 25 4 ≤ 25 4

Vậy  MaxA = 25 4  khi  m = 1 2 .

nguyen lan mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 5 2023 lúc 22:58

Δ=(2m)^2-4(m^2+2m+3)

=4m^2-4m^2-8m-12=-8m-12

Để PT có 2 nghiệm pb thì -8m-12>0

=>-8m>12

=>m<-3/2

x1^3+x2^3=108

=>(x1+x2)^3-3x1x2(x1+x2)=108

=>(-2m)^3-3(m^2+2m+3)*(-2m)=108

=>-8m^3+6m(m^2+2m+3)=108

=>-8m^3+6m^3+12m^2+18m-108=0

=>-2m^3+12m^2+18m-108=0

=>-2m^2(m-6)+18(m-6)=0

=>(m-6)(-2m^2+18)=0

=>m=-3

Lê Tiến Đạt
Xem chi tiết
Nguyễn Hoàng Huy
Xem chi tiết
Xyz OLM
2 tháng 5 2023 lúc 17:42

Phương trình đã cho có nghiệm phân biệt khi : 

\(\Delta'=m^2-\left(m^2+2m+3\right)=-2m-3>0\)

\(\Leftrightarrow m< -\dfrac{3}{2}\)(*)

Hệ thức Viette : \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=m^2+2m+3\end{matrix}\right.\)

Có \(x_1^3+x_2^3=108\)

\(\Leftrightarrow\left(x_1+x_2\right).\left(x_1^2-x_1x_2+x_2^2\right)=108\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=108\)

\(\Leftrightarrow-8m^3+6m\left(m^2+2m+3\right)=108\)

\(\Leftrightarrow m^3-6m^2-9m+54=0\)

\(\Leftrightarrow\left(m-6\right).\left(m-3\right).\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=6\\m=\pm3\end{matrix}\right.\)

Kết hợp (*) được m = -3 thỏa mãn

Nguyễn Đỗ Mai Anh
Xem chi tiết
Lê Song Phương
2 tháng 5 2022 lúc 19:05

a) Khi \(m=1\) thì pt đã cho trở thành \(x^2-2x-10=0\) (*)

pt (*) có \(\Delta'=\left(-1\right)^2-\left(-10\right)=11>0\) 

Do đó (*) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-\left(-1\right)+\sqrt{11}}{1}=1+\sqrt{11}\\x_2=\dfrac{-\left(-1\right)-\sqrt{11}}{1}=1-\sqrt{11}\end{matrix}\right.\)

b) Xét pt đã cho \(x^2-mx-10=0\) \(\left(a=1;b=-m;c=-10\right)\)

Nhận thấy \(ac=1\left(-10\right)=-10< 0\) nên pt đã cho luôn có 2 nghiệm phân biệt \(x_1,x_2\).

Áp dụng hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-m}{1}=m\\x_1x_2=\dfrac{-10}{1}=-10\end{matrix}\right.\)

Ta có \(x_1^2+x_2^2=29\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=29\Leftrightarrow m^2-2\left(-10\right)=29\)\(\Leftrightarrow m^2+20=29\Leftrightarrow m^2=9\Leftrightarrow m=\pm3\)

Vậy để pt đã cho có 2 nghiệm phân biệt thỏa mãn đề bài thì \(m=\pm3\)

gấu béo
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 6 2023 lúc 23:13

a: Δ=(-2m)^2-4(m-2)

=4m^2-4m+8=(2m-1)^2+7>=7>0

=>PT luôn có hai nghiệm phân biệt

b: x1^2+x2^2-6x1x2

=(x1+x2)^2-8x1x2

=(2m)^2-8(m-2)

=4m^2-8m+16=(2m-2)^2+8>=8

=>24/(2m-2)^2+8<=3

=>M>=-3

Dấu = xảy ra khi m=1

Min Suga
Xem chi tiết
nguyen ngoc son
Xem chi tiết
ILoveMath
23 tháng 2 2022 lúc 21:23

a, Thay m=3 vào pt ta có:

\(\left(1\right)\Leftrightarrow x^2-6x+4=0\\ \Leftrightarrow x=3\pm\sqrt{5}\)

b, Để pt có 2 nghiệm thì \(\Delta'\ge0\)

\(\Leftrightarrow\left(-m\right)^2-1.4\ge0\\ \Leftrightarrow m^2-4\ge0\\ \Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\)

\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\\ \Leftrightarrow x^2_1+2x_1+1+x^2_2+2x_2+1=2\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\\ \Leftrightarrow\left(2m\right)^2-2.4+2.2m=0\\ \Leftrightarrow4m^2+4m-8=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

 

Việt Hoàng
Xem chi tiết
Nguyễn Ngọc Huy Toàn
11 tháng 5 2022 lúc 20:18

a.\(m=1\)

\(\Leftrightarrow x^2-2.1x+1^2-1-3=0\)

\(\Leftrightarrow x^2-2x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) ( Vi-ét )

b.\(\Delta=\left(-2m\right)^2-4\left(m^2-m-3\right)\)

      \(=4m^2-4m^2+4m+12\)

      \(=4m+12\)

Để pt có nghiệm kép thì \(\Delta=0\)

                                        \(\Leftrightarrow4m+12=0\) 

                                         \(\Leftrightarrow m=-3\)

Leon Lowe
Xem chi tiết
Akai Haruma
1 tháng 4 2021 lúc 1:47

PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?

PT cuối cũng bị lỗi.

Bạn xem lại đề!

Akai Haruma
1 tháng 4 2021 lúc 19:27

Lời giải:

a) 

Ta có: $\Delta'=m^2-(2m-2)=m^2-2m+2=(m-1)^2+1>0$ với mọi $m\in\mathbb{R}$

Do đó pt luôn có 2 nghiệm phân biệt $x_1,x_2$ với mọi $m\in\mathbb{R}$

b) 

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-2m\\ x_1x_2=2m-2\end{matrix}\right.\)

Để $x_1^2+x_2^2-3x_1x_2=4$

$\Leftrightarrow (x_1+x_2)^2-5x_1x_2=4$

$\Leftrightarrow (-2m)^2-5(2m-2)=4$

$\Leftrightarrow 4m^2-10m+6=0$

$\Leftrightarrow 2m^2-5m+3=0$

$\Leftrightarrow (m-1)(2m-3)=0$

$\Rightarrow m=1$ hoặc $m=\frac{3}{2}$ (đều thỏa mãn)