Cho góc \(\alpha\) thỏa mãn: \(\sin\alpha+\cos\alpha=\frac{\sqrt{2}}{2}\) . Tính P= \(\tan^2\alpha+\cot^2\alpha\)
Cho góc nhọn \(\alpha\)thỏa mãn \(\tan\alpha=\frac{2}{\sqrt{3}}\). Tính: \(B=\frac{\cos^4\alpha+\sin^2\alpha\left(\cos^2\alpha+1\right)}{2\cos^4\alpha+2\sin^2\cos^2-\frac{3}{5}\sin^2\alpha}\)
Cho góc \(\alpha \;\;({0^o} < \alpha < {180^o})\) thỏa mãn \(\tan \alpha = 3\)
Tính giá trị biểu thức: \(P = \frac{{2\sin \alpha - 3\cos \alpha }}{{3\sin \alpha + 2\cos \alpha }}\)
\(P=\dfrac{2sin\alpha-3cos\alpha}{3sin\alpha+2cos\alpha}\\ =\dfrac{\dfrac{2sin\alpha}{cos\alpha}-\dfrac{3cos\alpha}{cos\alpha}}{\dfrac{3sin\alpha}{cos\alpha}+\dfrac{2cos\alpha}{cos\alpha}}\\ =\dfrac{2tan\alpha-3}{3tan\alpha+2}=\dfrac{2.3-3}{3.3+2}=\dfrac{3}{11}\)
Ta có: \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\quad (\alpha \ne {90^o})\)
\( \Rightarrow \frac{1}{{{{\cos }^2}\alpha }} = 1 + {3^2} = 10\)
\( \Leftrightarrow {\cos ^2}\alpha = \frac{1}{{10}} \Leftrightarrow \cos \alpha = \pm \frac{{\sqrt {10} }}{{10}}\)
Vì \({0^o} < \alpha < {180^o}\) nên \(\sin \alpha > 0\).
Mà \(\tan \alpha = 3 > 0 \Rightarrow \cos \alpha > 0 \Rightarrow \cos \alpha = \frac{{\sqrt {10} }}{{10}}\)
Lại có: \(\sin \alpha = \cos \alpha .\tan \alpha = \frac{{\sqrt {10} }}{{10}}.3 = \frac{{3\sqrt {10} }}{{10}}.\)
\( \Rightarrow P = \dfrac{{2.\frac{{3\sqrt {10} }}{{10}} - 3.\frac{{\sqrt {10} }}{{10}}}}{{3.\frac{{3\sqrt {10} }}{{10}} + 2.\frac{{\sqrt {10} }}{{10}}}} = \dfrac{{\frac{{\sqrt {10} }}{{10}}\left( {2.3 - 3} \right)}}{{\frac{{\sqrt {10} }}{{10}}\left( {3.3 + 2} \right)}} = \dfrac{3}{{11}}.\)
a) Biết sinα= \(\frac{1}{2}\). Tính cosα, tanα, cotα.
b) Biết cosα= \(\frac{2}{5}\). Tính sinα, tanα, cotα.
c) Biết tanα= 3. Tính cosα, sinα, cotα.
d) Biết cotα=\(\sqrt{3}\). Tính cosα, tanα, sinα.
e) Biết sinα= \(\frac{1}{\sqrt{3}}\). Tính cosα, tanα, cotα.
1/ Cho \(cot\alpha=\sqrt{5}\) . Tính \(C=sin^2\alpha-sin\alpha cos\alpha+cos^2\alpha\)
2/ Cho \(tan\alpha=3\) . Tính \(B=\dfrac{sin\alpha-cos\alpha}{sin^3\alpha+3cos^3\alpha+2sin\alpha}\)
1) \(cot\alpha=\sqrt[]{5}\Rightarrow tan\alpha=\dfrac{1}{\sqrt[]{5}}\)
\(C=sin^2\alpha-sin\alpha.cos\alpha+cos^2\alpha\)
\(\Leftrightarrow C=\dfrac{1}{cos^2\alpha}\left(tan^2\alpha-tan\alpha+1\right)\)
\(\Leftrightarrow C=\left(1+tan^2\alpha\right)\left(tan^2\alpha-tan\alpha+1\right)\)
\(\Leftrightarrow C=\left(1+\dfrac{1}{5}\right)\left(\dfrac{1}{5}-\dfrac{1}{\sqrt[]{5}}+1\right)\)
\(\Leftrightarrow C=\dfrac{6}{5}\left(\dfrac{6}{5}-\dfrac{\sqrt[]{5}}{5}\right)=\dfrac{6}{25}\left(6-\sqrt[]{5}\right)\)
1: \(cota=\sqrt{5}\)
=>\(cosa=\sqrt{5}\cdot sina\)
\(1+cot^2a=\dfrac{1}{sin^2a}\)
=>\(\dfrac{1}{sin^2a}=1+5=6\)
=>\(sin^2a=\dfrac{1}{6}\)
\(C=sin^2a-sina\cdot\sqrt{5}\cdot sina+\left(\sqrt{5}\cdot sina\right)^2\)
\(=sin^2a\left(1-\sqrt{5}+5\right)=\dfrac{1}{6}\cdot\left(6-\sqrt{5}\right)\)
2: tan a=3
=>sin a=3*cosa
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>\(\dfrac{1}{cos^2a}=1+9=10\)
=>\(cos^2a=\dfrac{1}{10}\)
\(B=\dfrac{3\cdot cosa-cosa}{27\cdot cos^3a+3\cdot cos^3a+2\cdot3\cdot cosa}\)
\(=\dfrac{2\cdot cosa}{30cos^3a+6cosa}=\dfrac{2}{30cos^2a+6}\)
\(=\dfrac{2}{3+6}=\dfrac{2}{9}\)
Cho sin\(\alpha\) + cos\(\alpha\) =\(\sqrt{2}\)
a, Tính cos\(\alpha\), sin\(\alpha\), tan\(\alpha\), cot\(\alpha\).
b, Tính F = \(sin^5\alpha+cos^5\alpha\)
Cho góc lượng giác \(\alpha \). So sánh
a) \({\cos ^2}\alpha + {\sin ^2}\alpha \,\,\) và 1
b) \(\tan \alpha .\cot \alpha \,\,\) và 1 với \(\cos \alpha \ne 0;\sin \alpha \ne 0\)
c) \(1 + {\tan ^2}\alpha \,\,\) và \(\frac{1}{{{{\cos }^2}\alpha }}\) với \(\cos \alpha \ne 0\)
d) \(1 + {\cot ^2}\alpha \,\) và \(\frac{1}{{{{\sin }^2}\alpha }}\) với \(\sin \alpha \ne 0\)
a) \({\cos ^2}\alpha + {\sin ^2}\alpha = 1\)
b) \(\tan \alpha .\cot \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}.\frac{{\cos \alpha }}{{\sin \alpha }} = 1\)
c) \(\frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = {\tan ^2}\alpha + 1\)
d) \(\frac{1}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = 1 + {\cot ^2}\alpha \)
CMR
a)\(\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}\)
b)\(\frac{\tan\alpha+1}{\tan\alpha-1}=\frac{1+\cot\alpha}{1-\cot\alpha}\)
c) \(\tan^2\alpha-\sin^2\alpha=\tan^2\alpha.\sin^2\alpha\)
d)\(\frac{1-4\sin^2\alpha.\cos^2\alpha}{\left(\sin\alpha-\cos\alpha\right)^2}=\left(\sin\alpha+\cos\alpha\right)^2\)
Cho tan\(\alpha\) + cot\(\alpha\) = 2
a, Tính cos\(\alpha\), sin\(\alpha\), tan\(\alpha\), cot\(\alpha\).
b, Tính E = \(\dfrac{sin\alpha.cos\alpha}{tan^2\alpha+cot^2\alpha}\)
Lời giải:
a.
$\tan a+\cot a=2\Leftrightarrow \tan a+\frac{1}{\tan a}=2$
$\Leftrightarrow \frac{\tan ^2a+1}{\tan a}=2$
$\Leftrightarrow \tan ^2a-2\tan a+1=0$
$\Leftrightarrow (\tan a-1)^2=0\Rightarrow \tan a=1$
$\cot a=\frac{1}{\tan a}=1$
$1=\tan a=\frac{\cos a}{\sin a}\Rightarrow \cos a=\sin a$
Mà $\cos ^2a+\sin ^2a=1$
$\Rightarrow \cos a=\sin a=\pm \frac{1}{\sqrt{2}}$
b.
Vì $\sin a=\cos a=\pm \frac{1}{\sqrt{2}}$
$\Rightarrow \sin a\cos a=\frac{1}{2}$
$E=\frac{\sin a.\cos a}{\tan ^2a+\cot ^2a}=\frac{\frac{1}{2}}{1+1}=\frac{1}{4}$
a) Cho $\cos \alpha=\dfrac{3}{4}$ với $0^{\circ}<\alpha<90^{\circ}$. Tính $A=\dfrac{\tan \alpha+3 \cot \alpha}{\tan \alpha+\cot \alpha}$.
b) Cho $\tan \alpha=\sqrt{2}$. Tính $B=\dfrac{\sin \alpha-\cos \alpha}{\sin ^{3} \alpha+3 \cos ^{3} \alpha+2 \sin \alpha}$.
Tìm góc \(\alpha ({0^o} \le \alpha \le {180^o})\) trong mỗi trường hợp sau:
a) \(\sin \alpha = \frac{{\sqrt 3 }}{2}\)
b) \(\cos \alpha = \frac{{ - \sqrt 2 }}{2}\)
c) \(\tan \alpha = - 1\)
d) \(\cot \alpha = - \sqrt 3 \)
a) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\sin \alpha \) ta có:
\(\sin \alpha = \frac{{\sqrt 3 }}{2}\) với \(\alpha = {60^o}\) và \(\alpha = {120^o}\)
b) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\cos \alpha \) ta có:
\(\cos \alpha = \frac{{ - \sqrt 2 }}{2}\) với \(\alpha = {135^o}\)
c) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\tan \alpha \) ta có:
\(\tan \alpha = - 1\) với \(\alpha = {135^o}\)
d) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\cot \alpha \) ta có:
\(\cot \alpha = - \sqrt 3 \) với \(\alpha = {150^o}\)