Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Giao Khánh Linh
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
YangSu
24 tháng 9 2023 lúc 15:16

\(P=\dfrac{2sin\alpha-3cos\alpha}{3sin\alpha+2cos\alpha}\\ =\dfrac{\dfrac{2sin\alpha}{cos\alpha}-\dfrac{3cos\alpha}{cos\alpha}}{\dfrac{3sin\alpha}{cos\alpha}+\dfrac{2cos\alpha}{cos\alpha}}\\ =\dfrac{2tan\alpha-3}{3tan\alpha+2}=\dfrac{2.3-3}{3.3+2}=\dfrac{3}{11}\)

Hà Quang Minh
24 tháng 9 2023 lúc 15:17

Ta có: \(1 + {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }}\quad (\alpha  \ne {90^o})\)

\( \Rightarrow \frac{1}{{{{\cos }^2}\alpha }} = 1 + {3^2} = 10\)

\( \Leftrightarrow {\cos ^2}\alpha  = \frac{1}{{10}} \Leftrightarrow \cos \alpha  =  \pm \frac{{\sqrt {10} }}{{10}}\)

Vì \({0^o} < \alpha  < {180^o}\) nên \(\sin \alpha  > 0\).

Mà \(\tan \alpha  = 3 > 0 \Rightarrow \cos \alpha  > 0 \Rightarrow \cos \alpha  = \frac{{\sqrt {10} }}{{10}}\)

Lại có: \(\sin \alpha  = \cos \alpha .\tan \alpha  = \frac{{\sqrt {10} }}{{10}}.3 = \frac{{3\sqrt {10} }}{{10}}.\)

\( \Rightarrow P = \dfrac{{2.\frac{{3\sqrt {10} }}{{10}} - 3.\frac{{\sqrt {10} }}{{10}}}}{{3.\frac{{3\sqrt {10} }}{{10}} + 2.\frac{{\sqrt {10} }}{{10}}}} = \dfrac{{\frac{{\sqrt {10} }}{{10}}\left( {2.3 - 3} \right)}}{{\frac{{\sqrt {10} }}{{10}}\left( {3.3 + 2} \right)}} = \dfrac{3}{{11}}.\)

Nguyễn Phương Thảo
Xem chi tiết
Nhi Hoàng
Xem chi tiết
Nguyễn Đức Trí
12 tháng 9 2023 lúc 21:57

1) \(cot\alpha=\sqrt[]{5}\Rightarrow tan\alpha=\dfrac{1}{\sqrt[]{5}}\)

\(C=sin^2\alpha-sin\alpha.cos\alpha+cos^2\alpha\)

\(\Leftrightarrow C=\dfrac{1}{cos^2\alpha}\left(tan^2\alpha-tan\alpha+1\right)\)

\(\Leftrightarrow C=\left(1+tan^2\alpha\right)\left(tan^2\alpha-tan\alpha+1\right)\)

\(\Leftrightarrow C=\left(1+\dfrac{1}{5}\right)\left(\dfrac{1}{5}-\dfrac{1}{\sqrt[]{5}}+1\right)\)

\(\Leftrightarrow C=\dfrac{6}{5}\left(\dfrac{6}{5}-\dfrac{\sqrt[]{5}}{5}\right)=\dfrac{6}{25}\left(6-\sqrt[]{5}\right)\)

Nguyễn Lê Phước Thịnh
12 tháng 9 2023 lúc 21:33

1: \(cota=\sqrt{5}\)

=>\(cosa=\sqrt{5}\cdot sina\)

\(1+cot^2a=\dfrac{1}{sin^2a}\)

=>\(\dfrac{1}{sin^2a}=1+5=6\)

=>\(sin^2a=\dfrac{1}{6}\)

\(C=sin^2a-sina\cdot\sqrt{5}\cdot sina+\left(\sqrt{5}\cdot sina\right)^2\)

\(=sin^2a\left(1-\sqrt{5}+5\right)=\dfrac{1}{6}\cdot\left(6-\sqrt{5}\right)\)

2: tan a=3

=>sin a=3*cosa 

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=1+9=10\)
=>\(cos^2a=\dfrac{1}{10}\)

\(B=\dfrac{3\cdot cosa-cosa}{27\cdot cos^3a+3\cdot cos^3a+2\cdot3\cdot cosa}\)

\(=\dfrac{2\cdot cosa}{30cos^3a+6cosa}=\dfrac{2}{30cos^2a+6}\)

\(=\dfrac{2}{3+6}=\dfrac{2}{9}\)

Nguyễn Sinh Hùng
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 15:04

a)     \({\cos ^2}\alpha  + {\sin ^2}\alpha  = 1\)

b)     \(\tan \alpha .\cot \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }}.\frac{{\cos \alpha }}{{\sin \alpha }} = 1\)

c)     \(\frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = {\tan ^2}\alpha  + 1\)

d)     \(\frac{1}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = 1 + {\cot ^2}\alpha \)

Hoàng Ngọc Anh
Xem chi tiết
Nguyễn Sinh Hùng
Xem chi tiết
Akai Haruma
26 tháng 7 2021 lúc 14:47

Lời giải:
a.

$\tan a+\cot a=2\Leftrightarrow \tan a+\frac{1}{\tan a}=2$

$\Leftrightarrow \frac{\tan ^2a+1}{\tan a}=2$

$\Leftrightarrow \tan ^2a-2\tan a+1=0$

$\Leftrightarrow (\tan a-1)^2=0\Rightarrow \tan a=1$

$\cot a=\frac{1}{\tan a}=1$

$1=\tan a=\frac{\cos a}{\sin a}\Rightarrow \cos a=\sin a$

Mà $\cos ^2a+\sin ^2a=1$

$\Rightarrow \cos a=\sin a=\pm \frac{1}{\sqrt{2}}$

b.

Vì $\sin a=\cos a=\pm \frac{1}{\sqrt{2}}$

$\Rightarrow \sin a\cos a=\frac{1}{2}$

$E=\frac{\sin a.\cos a}{\tan ^2a+\cot ^2a}=\frac{\frac{1}{2}}{1+1}=\frac{1}{4}$

Thầy Tùng Dương
Xem chi tiết
Cao Thị Kim Ngân
18 tháng 7 2022 lúc 10:42

a) Ta có A=\dfrac{\tan \alpha+3 \dfrac{1}{\tan \alpha}}{\tan \alpha+\dfrac{1}{\tan \alpha}}=\dfrac{\tan ^{2} \alpha+3}{\tan ^{2} \alpha+1}=\dfrac{\dfrac{1}{\cos ^{2} \alpha}+2}{\dfrac{1}{\cos ^{2} \alpha}}=1+2 \cos ^{2} \alpha Suy ra A=1+2 \cdot \dfrac{9}{16}=\dfrac{17}{8}.

b) B=\dfrac{\dfrac{\sin \alpha}{\cos ^{3} \alpha}-\dfrac{\cos \alpha}{\cos ^{3} \alpha}}{\dfrac{\sin ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{3 \cos ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{2 \sin \alpha}{\cos ^{3} \alpha}}=\dfrac{\tan \alpha\left(\tan ^{2} \alpha+1\right)-\left(\tan ^{2} \alpha+1\right)}{\tan ^{3} \alpha+3+2 \tan \alpha\left(\tan ^{2} \alpha+1\right)}.

Suy ra B=\dfrac{\sqrt{2}(2+1)-(2+1)}{2 \sqrt{2}+3+2 \sqrt{2}(2+1)}=\dfrac{3(\sqrt{2}-1)}{3+8 \sqrt{2}}.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 16:27

a) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\sin \alpha \) ta có:

\(\sin \alpha  = \frac{{\sqrt 3 }}{2}\) với \(\alpha  = {60^o}\) và \(\alpha  = {120^o}\)

b) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\cos \alpha \) ta có:

\(\cos \alpha  = \frac{{ - \sqrt 2 }}{2}\) với \(\alpha  = {135^o}\)

c) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\tan \alpha \) ta có:

\(\tan \alpha  =  - 1\) với \(\alpha  = {135^o}\)

d) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\cot \alpha \) ta có:

\(\cot \alpha  =  - \sqrt 3 \) với \(\alpha  = {150^o}\)