Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yết Thiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 10 2021 lúc 23:14

5: Ta có: \(\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\)

\(=-\sqrt{2}-\sqrt{2}\)

\(=-2\sqrt{2}\)

Yết Thiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 10 2021 lúc 23:21

4: Ta có: \(\dfrac{1}{3+\sqrt{5}}-\dfrac{1}{3-\sqrt{5}}\)

\(=\dfrac{3-\sqrt{5}-3-\sqrt{5}}{4}\)

\(=\dfrac{-\sqrt{5}}{2}\)

Yết Thiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 10 2021 lúc 23:20

1: ta có: \(\dfrac{1}{3-2\sqrt{2}}+\dfrac{1}{\sqrt{5}+2}\)

\(=3+2\sqrt{2}+\sqrt{5}-2\)

\(=2\sqrt{2}+\sqrt{5}+1\)

2: Ta có: \(\dfrac{1}{3-2\sqrt{2}}-\dfrac{1}{3+2\sqrt{2}}\)

\(=3+2\sqrt{2}-3+2\sqrt{2}\)

\(=4\sqrt{2}\)

Đinh Hoàng Nhất Quyên
Xem chi tiết
Trên con đường thành côn...
15 tháng 7 2023 lúc 17:21

Tổng quát:

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)\(=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)\(=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(\Rightarrow S=\dfrac{10}{11}\)

 

HT.Phong (9A5)
15 tháng 7 2023 lúc 17:21

Ta có công thức tổng quát như sau:

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)

\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left[\left(n+1\right)\sqrt{n}+n\sqrt{n+1}\right]\left[\left(n+1\right)\sqrt{n}-n\sqrt{n+1}\right]}\)

\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}\)

\(=\dfrac{\sqrt{n}}{n}-\dfrac{\sqrt{n+1}}{n+1}\)

\(=\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n+1}}\)

Áp dụng vào tổng S ta có:

\(S=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{121\sqrt{120}+120\sqrt{121}}\)

\(S=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{120}}+\dfrac{1}{\sqrt{121}}\)

\(S=1-\dfrac{1}{\sqrt{121}}=1-\dfrac{1}{11}=\dfrac{10}{11}\)

Nguyễn Duy Khang
Xem chi tiết
Toru
23 tháng 9 2023 lúc 22:47

\(a,\dfrac{3}{\sqrt{7}-4}+\dfrac{4+\sqrt{7}}{3}\)

\(=\dfrac{9}{3\left(\sqrt{7}-4\right)}+\dfrac{\left(\sqrt{7}-4\right)\left(\sqrt{7}+4\right)}{3\left(\sqrt{7}-4\right)}\)

\(=\dfrac{9+7-16}{3\left(\sqrt{7}-4\right)}\)

\(=0\)

\(b,\left(\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{3}-1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}\right):\dfrac{1}{2\sqrt{3}}\)

\(=\left[\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}\right]\cdot2\sqrt{3}\)

\(=\left(\sqrt{2}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}\right)\cdot2\sqrt{3}\)

\(=\left(\sqrt{2}+\sqrt{3}-\sqrt{2}\right)\cdot2\sqrt{3}\)

\(=\sqrt{3}\cdot2\sqrt{3}\)

\(=6\)

#\(Toru\)

Triết Phan
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 10 2021 lúc 16:26

\(a,=\dfrac{3-\sqrt{2}+3+\sqrt{2}}{\left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right)}=\dfrac{6}{-1}=-6\\ b,=\dfrac{6\sqrt{2}+8-6\sqrt{2}+8}{\left(3\sqrt{2}-4\right)\left(3\sqrt{2}+4\right)}=\dfrac{16}{2}=8\\ c,=\dfrac{\left(\sqrt{5}-\sqrt{3}\right)^2+\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\\ =\dfrac{8-2\sqrt{15}+8+2\sqrt{15}}{2}=\dfrac{16}{2}=8\)

\(d,=\dfrac{6\sqrt{2}+9\sqrt{3}-6\sqrt{2}+9\sqrt{3}}{\left(2\sqrt{2}-3\sqrt{3}\right)\left(2\sqrt{2}+3\sqrt{3}\right)}=\dfrac{18\sqrt{3}}{-19}=\dfrac{-18\sqrt{3}}{19}\\ e,=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\\ =\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\\ =\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\\ =\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)

Xem chi tiết
An Thy
16 tháng 7 2021 lúc 10:41

\(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2021}+\sqrt{2022}}\)

\(=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\dfrac{\sqrt{2022}-\sqrt{2021}}{\left(\sqrt{2021}+\sqrt{2022}\right)\left(\sqrt{2022}-\sqrt{2021}\right)}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2022}-\sqrt{2021}=\sqrt{2022}-1\)

Yết Thiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 10 2021 lúc 23:18

4: Ta có: \(\dfrac{6}{1-\sqrt{3}}-\dfrac{3\sqrt{3}+3}{\sqrt{3}+1}\)

\(=-3-3\sqrt{3}-3\)

\(=-6-3\sqrt{3}\)

nood
Xem chi tiết
HT.Phong (9A5)
24 tháng 9 2023 lúc 5:33

a) \(\dfrac{1}{3\sqrt{2}-2\sqrt{3}}-\dfrac{1}{2\sqrt{3}+3\sqrt{2}}\)

\(=\dfrac{1}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}-\dfrac{1}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}\)

\(=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}-\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\)

\(=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{6}}-\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{6}}\)

\(=\dfrac{\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}}{\sqrt{6}}\)

\(=\dfrac{2\sqrt{2}}{\sqrt{6}}\)

\(=\dfrac{2\sqrt{3}}{3}\)

b) \(\dfrac{4\sqrt{3}-8}{2\sqrt{3}-4}-\dfrac{1}{\sqrt{5}-2}\)

\(=\dfrac{4\left(\sqrt{3}-2\right)}{2\left(\sqrt{3}-2\right)}-\dfrac{\sqrt{5}+2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\)

\(=\dfrac{4}{2}-\dfrac{\sqrt{5}+2}{5-4}\)

\(=2-\sqrt{5}-2\)

\(=-\sqrt{5}\)

Nguyễn Quỳnh Anhh
Xem chi tiết
Nguyễn Huy Tú
17 tháng 7 2021 lúc 16:28

undefined

Nguyễn Lê Phước Thịnh
17 tháng 7 2021 lúc 23:07

Ta có: \(S=\dfrac{1}{2+\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)

\(=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)