a) \(\dfrac{1}{3\sqrt{2}-2\sqrt{3}}-\dfrac{1}{2\sqrt{3}+3\sqrt{2}}\)
\(=\dfrac{1}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}-\dfrac{1}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}-\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{6}}-\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{6}}\)
\(=\dfrac{\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}}{\sqrt{6}}\)
\(=\dfrac{2\sqrt{2}}{\sqrt{6}}\)
\(=\dfrac{2\sqrt{3}}{3}\)
b) \(\dfrac{4\sqrt{3}-8}{2\sqrt{3}-4}-\dfrac{1}{\sqrt{5}-2}\)
\(=\dfrac{4\left(\sqrt{3}-2\right)}{2\left(\sqrt{3}-2\right)}-\dfrac{\sqrt{5}+2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\)
\(=\dfrac{4}{2}-\dfrac{\sqrt{5}+2}{5-4}\)
\(=2-\sqrt{5}-2\)
\(=-\sqrt{5}\)