\(cos3x=sin\left(x+\dfrac{\sqcap}{4}\right)\)
Tìm nghiệm của các phương trinh:
1,\(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
2,\(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}\left(1+cot2xcotx\right)=0\)
3,\(cos^4x+sin^4x+cos\left(x-\dfrac{\pi}{4}\right)sin\left(3x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)
4,\(cos5x+cos2x+2sin3xsin2x=0\) trên \(\left[0;2\pi\right]\)
5,\(\dfrac{cos\left(cosx+2sinx\right)+3sinx\left(sinx+\sqrt{2}\right)}{sin2x-1}=1\)
6,\(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
7,\(cos\left(2x+\dfrac{\pi}{4}\right)+cos\left(2x-\dfrac{\pi}{4}\right)+4sinx=2+\sqrt{2}\left(1-sinx\right)\)
1, \(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{sinx+2sinx.sin2x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{sinx+2sinx.sin2x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{sinx+cosx-cos3x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{sinx+cosx+sin3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{2sin2x.cosx+cosx}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{cosx\left(2sin2x+1\right)}{1+2sin2x}=\dfrac{2+2cos^2x}{5}\)
⇒ cosx = \(\dfrac{2+2cos^2x}{5}\)
⇔ 2cos2x - 5cosx + 2 = 0
⇔ \(\left[{}\begin{matrix}cosx=2\\cosx=\dfrac{1}{2}\end{matrix}\right.\)
⇔ \(x=\pm\dfrac{\pi}{3}+k.2\pi\) , k là số nguyên
2, \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\left(1+cot2x.cotx\right)=0\)
⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\dfrac{cos2x.cosx+sin2x.sinx}{sin2x.sinx}=0\)
⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\dfrac{cosx}{sin2x.sinx}=0\)
⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2cosx}{2cosx.sin^4x}=0\)
⇒ \(48-\dfrac{1}{cos^4x}-\dfrac{1}{sin^4x}=0\). ĐKXĐ : sin2x ≠ 0
⇔ \(\dfrac{1}{cos^4x}+\dfrac{1}{sin^4x}=48\)
⇒ sin4x + cos4x = 48.sin4x . cos4x
⇔ (sin2x + cos2x)2 - 2sin2x. cos2x = 3 . (2sinx.cosx)4
⇔ 1 - \(\dfrac{1}{2}\) . (2sinx . cosx)2 = 3(2sinx.cosx)4
⇔ 1 - \(\dfrac{1}{2}sin^22x\) = 3sin42x
⇔ \(sin^22x=\dfrac{1}{2}\) (thỏa mãn ĐKXĐ)
⇔ 1 - 2sin22x = 0
⇔ cos4x = 0
⇔ \(x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\)
3, \(sin^4x+cos^4x+sin\left(3x-\dfrac{\pi}{4}\right).cos\left(x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)
⇔ \(\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+\dfrac{1}{2}sin\left(4x-\dfrac{\pi}{2}\right)+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)
⇔ \(1-\dfrac{1}{2}sin^22x+\dfrac{1}{2}sin2x-\dfrac{1}{2}cos4x-\dfrac{3}{2}=0\)
⇔ \(\dfrac{1}{2}sin2x-\dfrac{1}{2}cos4x-\dfrac{1}{2}-\dfrac{1}{2}sin^22x=0\)
⇔ sin2x - sin22x - (1 + cos4x) = 0
⇔ sin2x - sin22x - 2cos22x = 0
⇔ sin2x - 2 (cos22x + sin22x) + sin22x = 0
⇔ sin22x + sin2x - 2 = 0
⇔ \(\left[{}\begin{matrix}sin2x=1\\sin2x=-2\end{matrix}\right.\)
⇔ sin2x = 1
⇔ \(2x=\dfrac{\pi}{2}+k.2\pi\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\)
4, cos5x + cos2x + 2sin3x . sin2x = 0
⇔ cos5x + cos2x + cosx - cos5x = 0
⇔ cos2x + cosx = 0
⇔ \(2cos\dfrac{3x}{2}.cos\dfrac{x}{2}=0\)
⇔ \(cos\dfrac{3x}{2}=0\)
⇔ \(\dfrac{3x}{2}=\dfrac{\pi}{2}+k\pi\)
⇔ x = \(\dfrac{\pi}{3}+k.\dfrac{2\pi}{3}\)
Do x ∈ [0 ; 2π] nên ta có \(0\le\dfrac{\pi}{3}+k\dfrac{2\pi}{3}\le2\pi\)
⇔ \(-\dfrac{1}{2}\le k\le\dfrac{5}{2}\). Do k là số nguyên nên k ∈ {0 ; 1 ; 2}
Vậy các nghiệm thỏa mãn là các phần tử của tập hợp
\(S=\left\{\dfrac{\pi}{3};\pi;\dfrac{5\pi}{3}\right\}\)
5, \(\dfrac{cos^2x+sin2x+3sin^2x+3\sqrt{2}sinx}{sin2x-1}=1\)
⇒ \(cos^2x+sin2x+3sin^2x+3\sqrt{2}sinx=sin2x-1\)
⇒ cos2x + 3sin2x + 3\(\sqrt{2}\)sin2x + 1 = 0
⇔ 2 + 2sin2x + 3\(\sqrt{2}\)sin2x = 0
⇔ 2 + 1 - cos2x + 3\(\sqrt{2}\) sin2x = 0
⇔ \(3\sqrt{2}sin2x-cos2x=-1\)
Còn lại tự giải
7, \(cos\left(2x+\dfrac{\pi}{4}\right)+cos\left(2x-\dfrac{\pi}{4}\right)+4sinx=2+\sqrt{2}\left(1-sinx\right)\)
⇔ \(2cos2x.cos\dfrac{\pi}{4}+4sinx=2+\sqrt{2}\left(1-sinx\right)\)
⇔ \(\sqrt{2}cos2x+4sinx=2+\sqrt{2}-\sqrt{2}sinx\)
Dùng công thức : cos2x = 1 - 2sin2x đưa về phương trình bậc 2 ẩn sinx
tìm tập xác định của hàm số lượng giác sau
a)\(y=\dfrac{tan\left(2x-\dfrac{\pi}{4}\right)}{\sqrt{1-sin\left(x-\dfrac{\pi}{8}\right)}}\)
b)\(y=\dfrac{tan\left(x-\dfrac{\pi}{4}\right)}{1-cos\left(x+\dfrac{\pi}{3}\right)}\)
c)\(y=\dfrac{3}{cosx-cos3x}\)
d)\(y=\dfrac{4}{sin^2x-cos^2x}\)
e)\(y=\dfrac{1+cot\left(\dfrac{\pi}{3}+x\right)}{tan^2\left(3x-\dfrac{\pi}{4}\right)}\)
GPT: \(\dfrac{4\sin^2\dfrac{x}{2}-\sqrt{3}\cos2x-1-2\cos^2\left(x-\dfrac{3\pi}{4}\right)}{\sqrt{2\cos3x+1}}=0\)
Lời giải:ĐK: $\cos 3x>\frac{-1}{2}$
PT $\Rightarrow 4\sin ^2\frac{x}{2}-\sqrt{3}\cos 2x-1-2\cos ^2(x-\frac{3\pi}{4})=0$
$\Leftrightarrow 2(1-\cos x)-\sqrt{3}\cos 2x-2+[1-2\cos ^2(x-\frac{3\pi}{4})]=0$
$\Leftrightarrow -2\cos x-\sqrt{3}\cos 2x-cos (2x-\frac{3\pi}{2})=0$
$\Leftrightarrow 2\cos x+\sqrt{3}\cos 2x+\cos (2x-\frac{3\pi}{2})=0$
$\Leftrightarrow 2\cos x+\sqrt{3}\cos 2x+\sin 2x=0$
$\Leftrightarrow \cos x+\frac{\sqrt{3}}{2}\cos 2x+\frac{1}{2}\sin 2x=0$
$\Leftrightarrow \cos x-\cos (2x+\frac{5\pi}{6})=0
$\Leftrightarrow \cos x=\cos (2x+\frac{5\pi}{6})$
$\Rightarrow x+2k\pi =2x+\frac{5}{6}\pi$ hoặc $-x+2k\pi =2x+\frac{5}{6}\pi$
Vậy......
Giải các phương trình
a) \(\dfrac{\cos2x}{\sin2x-1}=0\)
b) \(\cos\left(\sin x\right)=1\)
c) \(2\sin^2x-1+\cos3x=0\)
d) \(tan3x.tanx=1\)
e) \(\cos3x=-\cos7x\)
a: ĐKXĐ: sin 2x<>1
=>2x<>pi/2+k2pi
=>x<>pi/4+kpi
\(\dfrac{cos2x}{sin2x-1}=0\)
=>cos2x=0
=>2x=pi/2+kpi
=>x=pi/4+kpi/2
Kết hợp ĐKXĐ, ta được:
x=3/4pi+k2pi hoặc x=7/4pi+k2pi
b: cos(sinx)=1
=>sin x=kpi
=>sin x=0
=>x=kpi
c: \(2\cdot sin^2x-1+cos3x=0\)
=>cos3x+cos2x=0
=>cos3x=-cos2x=-sin(pi/2-2x)=sin(2x-pi/2)
=>cos3x=cos(pi/2-2x+pi/2)=cos(pi-2x)
=>3x=pi-2x+k2pi hoặc 3x=-pi+2x+k2pi
=>x=-pi+k2pi hoặc x=pi/5+k2pi/5
e: cos3x=-cos7x
=>cos3x=cos(pi-7x)
=>3x=pi-7x+k2pi hoặc 3x=-pi+7x+k2pi
=>x=pi/10+kpi/5 hoặc x=pi/4-kpi/2
Giải các phương trình sau
a) \(sin^6x+cos^6x=cos2x+\dfrac{1}{16}\)
b) \(sin^4\dfrac{x}{2}+cos^4\dfrac{x}{2}=\dfrac{5}{2}-2sinx\)
c) \(cos5xcosx=cos4xcos2x+4-3sin^2x\)
d) \(2cosxcos2x=1+cos2x+cos3x\)
e) \(sin3x+cos2x=2\left(sin2xcosx-1\right)\)
a.
\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=cos2x+\dfrac{1}{16}\)
\(\Leftrightarrow1-\dfrac{3}{4}sin^22x=cos2x+\dfrac{1}{16}\)
\(\Leftrightarrow\dfrac{15}{16}-\dfrac{3}{4}\left(1-cos^22x\right)=cos2x\)
\(\Leftrightarrow\dfrac{3}{4}cos^22x-cos2x+\dfrac{3}{16}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\dfrac{4-\sqrt{7}}{6}\\cos2x=\dfrac{4+\sqrt{7}}{6}>1\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x=\pm\dfrac{1}{2}arccos\left(\dfrac{4-\sqrt{7}}{6}\right)+k\pi\)
b.
\(\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)^2-2sin^2\dfrac{x}{2}cos^2\dfrac{x}{2}=\dfrac{5}{2}-2sinx\)
\(\Leftrightarrow1-\dfrac{1}{2}sin^2x=\dfrac{5}{2}-2sinx\)
\(\Leftrightarrow\dfrac{1}{2}sin^2x-2sinx+\dfrac{3}{2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=3\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)
c.
\(\Leftrightarrow\dfrac{1}{2}cos6x+\dfrac{1}{2}cos4x=\dfrac{1}{2}cos6x+\dfrac{1}{2}cos2x+4-3\left(\dfrac{1}{2}-\dfrac{1}{2}cos2x\right)\)
\(\Leftrightarrow\dfrac{1}{2}\left(2cos^22x-1\right)=\dfrac{1}{2}cos2x+\dfrac{5}{2}+\dfrac{3}{2}cos2x\)
\(\Leftrightarrow cos^22x-2cos2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=3\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow2x=\pi+k2\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)
tính \(\lim\limits_{x\rightarrow0}\left(\dfrac{1-\sin x-\cos x}{1+\sin3x+\cos3x}\right)\)
1) \(\sqrt{2}\sin^3\left(x+\dfrac{\pi}{4}\right)=2\sin x\)
2) \(\cos x+\cos2x+\cos3x+\cos4x=0\)
Giải phương trình:
\(\cos3x+\cos7x=2\sin^2\left(\dfrac{\pi}{4}-\dfrac{5x}{2}\right)+2\cos^2\dfrac{9\pi}{2}\)
Đề sai nhiều chỗ vậy, lần sau ghi đúng đề đi.
\(cos3x+sin7x=2sin^2\left(\dfrac{\pi}{4}-\dfrac{5x}{2}\right)+2cos^2\dfrac{9x}{2}\)
\(\Leftrightarrow cos3x+sin7x=cos\left(\dfrac{\pi}{2}-5x\right)+1-2cos^2\dfrac{9x}{2}\)
\(\Leftrightarrow cos3x+sin7x=sin5x-cos9x\)
\(\Leftrightarrow2cos6x.cos3x+2cos6x.sinx=0\)
\(\Leftrightarrow2cos6x.\left(cos3x+sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos6x=0\\cos3x+sinx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos6x=0\\cos3x+cos\left(\dfrac{\pi}{2}-x\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos6x=0\\2cos\left(\dfrac{\pi}{4}+x\right).cos\left(2x-\dfrac{\pi}{4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos6x=0\\cos\left(\dfrac{\pi}{4}+x\right)=0\\cos\left(2x-\dfrac{\pi}{4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}6x=\dfrac{\pi}{2}+k\pi\\\dfrac{\pi}{4}+x=\dfrac{\pi}{2}+k\pi\\2x-\dfrac{\pi}{4}=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+\dfrac{k\pi}{6}\\x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{3\pi}{8}+\dfrac{k\pi}{2}\end{matrix}\right.\)
\(\dfrac{\sqrt{2}\left(sinx-cox\right)^2\left(1+2sin2x\right)}{sin3x+sin5x}=1-tanx\)
\(sin\left(2x-\dfrac{\pi}{4}\right)cos2x-2\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=0\)
(sin2x+cos2x)cosx+2cos2x -sinx=0
sinx + cosxsin2x + \(\sqrt{3}cos3x=2\left(cos4x+sin^3x\right)\)
\(\sqrt{3}cos5x-2sin3xcos2x-sinx=0\)