Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hân Hân
Xem chi tiết
Hồng Phúc
12 tháng 9 2021 lúc 16:19

B.

Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 23:09

Chọn B

Phượng Dương Thị
Xem chi tiết
Akai Haruma
8 tháng 12 2023 lúc 22:31

Câu 1: A

$\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{CA}+\overrightarrow{DC}=\overrightarrow{DA}=\overrightarrow{CB}$

Câu 2:

$\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{DB}$

$=\overrightarrow{DC}+\overrightarrow{CB}$

$\Rightarrow \overrightarrow{AB}-\overrightarrow{DC}=\overrightarrow{CB}+\overrightarrow{AD}$

$\Rightarrow \overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}$

Đáp án A.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 0:57

a)  Theo quy tắc hình bình hành ta có: \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

 \( \Rightarrow |\overrightarrow {AB}  + \overrightarrow {AD} |\; = \;|\overrightarrow {AC} |\)

Vậy mệnh đề này đúng.

b) Ta có: \(\overrightarrow {AB}  + \overrightarrow {BD}  = \overrightarrow {AD}  = \overrightarrow {BC}  \ne \overrightarrow {CB} \)

Vậy mệnh đề này sai.

c) Ta có: \(\overrightarrow {OA}  + \overrightarrow {OB}  = \overrightarrow {OC}  + \overrightarrow {OD} \)\( \Leftrightarrow \overrightarrow {OA}  - \overrightarrow {OD}  + \overrightarrow {OB}  - \overrightarrow {OC} =  \overrightarrow {0} \Leftrightarrow \overrightarrow {DA}  + \overrightarrow {CB} =\overrightarrow {0}\Leftrightarrow 2\overrightarrow {CB} =\overrightarrow {0} \)

Vậy mệnh đề này sai.

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
24 tháng 9 2023 lúc 15:50

Tham khảo:

a) Điểm M thuộc đường thẳng d khi và chỉ khi hai vecto \(\overrightarrow {AM} \) và \(\overrightarrow {AB} \) cùng phương (cùng giá d)

Khi và chỉ khi tồn tại số t để \(\overrightarrow {AM}  = t.\overrightarrow {AB} \).

Vậy khẳng định a) đúng.

 

b) Với điểm M bất kì, ta luôn có \(\overrightarrow {AM}  = \frac{{AM}}{{AB}}.\overrightarrow {AB} \)

Sai vì \(\overrightarrow {AM}  = \frac{{AM}}{{AB}}.\overrightarrow {AB} \) khi và chỉ khi \(\overrightarrow {AM} \) và \(\overrightarrow {AB} \) cùng hướng.

 

c) Điểm M thuộc tia đối của tia AB, tức là A nằm giữa M và B.

Khi và chỉ khi hai vecto \(\overrightarrow {AM} \) và \(\overrightarrow {AB} \) ngược hướng

\( \Leftrightarrow \) tồn tại số \(t \le 0\) để \(\overrightarrow {AM}  = t.\overrightarrow {AB} \)

Vậy khẳng định c) đúng.

Hân Zaa
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 8 2021 lúc 16:01

A sai

\(\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{DA}=\overrightarrow{DA}+\overrightarrow{AB}=\overrightarrow{DB}=-\overrightarrow{BD}\) mới đúng

Khẳng định A 

Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 0:49

Chọn A

Hân Hân
Xem chi tiết
Ikino Yushinomi
13 tháng 9 2021 lúc 9:10

C

Nguyễn Ngọc Anh
Xem chi tiết
wfgwsf
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 11 2021 lúc 20:44

Chọn A

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 16:56

a) Ta có: \(AB = CD \Rightarrow \left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {CD} } \right|\)

\(AB//CD\) và \(\overrightarrow {AB} \), \(\overrightarrow {DC} \) có hướng từ trái sang phải

Suy ra \(\overrightarrow {AB} \) và \(\overrightarrow {DC} \) cùng hướng

b) Ta có: \(AD = CB \Rightarrow \left| {\overrightarrow {AD} } \right| = \left| {\overrightarrow {CB} } \right|\)

\(AD//CB\) và \(\overrightarrow {AD} \)có hướng từ trên xuống dưới, \(\overrightarrow {CB} \) có hướng từ dưới lên trên. Suy ra \(\overrightarrow {AD} \) và \(\overrightarrow {CB} \) ngược hướng

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
24 tháng 9 2023 lúc 20:40

Tham khảo:

A. Ta có: \(\left( {\overrightarrow {AB} ,\overrightarrow {BD} } \right) = \left( {\overrightarrow {BE} ,\overrightarrow {BD} } \right) = {135^o} \ne {45^o}.\) Vậy A sai.

 

B. Ta có: \(\left( {\overrightarrow {AC} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {CF} ,\overrightarrow {CG} } \right) = {45^o}\) và  \(\overrightarrow {AC} .\overrightarrow {BC}  = AC.BC.\cos {45^o} = a\sqrt 2 .a.\frac{{\sqrt 2 }}{2} = {a^2}.\)

Vậy B đúng.

 

Chọn B

C. Dễ thấy \(AC \bot BD\) nên \(\overrightarrow {AC} .\overrightarrow {BD}  = 0 \ne {a^2}\sqrt 2.\) Vậy C sai.

 

D. Ta có: \(\left( {\overrightarrow {BA} .\overrightarrow {BD} } \right) = {45^o}\) \( \Rightarrow \overrightarrow {BA} .\overrightarrow {BD}  = BA.BD.\cos {45^o} = a.a\sqrt 2 .\frac{{\sqrt 2 }}{2} = {a^2} \ne  - {a^2}.\) Vậy D sai.