Cho hình bình hành ABCD xác định. Tìm điểm M thỏa mãn \(3\overrightarrow{AM}=\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{BD}\)
Cho hình bình hành \(ABCD\) tâm \(O\). Hai điểm \(M\) và \(N\) lần lượt là hai điểm di động trên hai đường thẳng \(AB,AD\) sao cho \(M,C,N\) thẳng hàng. Đặt \(\overrightarrow{AM}=x\overrightarrow{AB},\overrightarrow{AN}=y\overrightarrow{AD}\left(x,y\ne0\right)\), tìm biểu thức \(A\) thỏa mãn phương trình \(x+y=A.\)
Câu 1: Cho hình bình hành ABCD, M là trung điểm cạnh CD, N là trung điểm đoạn BM. Chứngminh rằng : \(\overrightarrow{AN}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}\). Câu 2. Trong mặt phẳng Oxy, cho tam giác ABC biết A (-1;-3), B (0;2), C (2;1)a) Tìm tọa độ điểm M trên Ox sao cho tam giác AMB vuông tại M.b) Tìm tọa độ hình chiếu của A lên BC. Câu 3. Cho tam giác ABCđều cạnh a , có AH là đường trung tuyến. Tính \(\left|\overrightarrow{AC}+\overrightarrow{AH}\right|\). Câu 4. Một trang trại cần thuê xe vận chuyển 450 con lợn và 35 tấn cám. Nơi cho thuê xe chỉ có 12 xe lớn và 10 xe nhỏ. Một chiếc xe lớn có thể chở 50 con lợn và 5 tấn cám. Một chiếc xe nhỏ có thể chở 30 con lợn và 1 tấn cám. Tiền thuê một xe lớn là 4 triệu đồng, một xe nhỏ là 2 triệu đồng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí thuê xe là thấp nhất? Câu 5. Để kéo đường dây điện băng qua một cái hồ hình chữ nhậtvới độ dài AB =140m , AD = 50m. Người ta dự định làm cột điện liên tiếp thẳng hàng và cách đều nhau. Cột thứ nhất nằm trên bờ AB và cách đỉnh A một khoảng bằng 10m. Cột thứ năm nằm trên bờ CD và cách đỉnh C một khoảng bằng 30m. Tính khoảng cách từ cột thứ tư đến bờ AD.
GIÚP MÌNH VỚI , MÌNH ĐANG CẦN GẤP!!!!! --- CẢM ƠN!!!!!
Trong mặt phẳng tọa độ Oxy , cho các điểm A( -7; 3), B( 0;1 ), C( -4;2)
a) Chứng minh A, B, C là ba đỉnh của một tam giác
b) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. Tìm tọa độ giao điểm hai đường chéo của hình bình hành ABCD
c) Tìm tọa độ điểm E sao cho B là trọng tâm \(\Delta ACE\)
d) Tìm tọa độ điểm M sao cho \(\overrightarrow{AM}=2\overrightarrow{BM}-3\overrightarrow{BC}\)
e) Tìm tọa độ điểm N trên trục hoành sao cho B, C, N thẳng hàng
f) Tìm K( -2, y) để A, B, K thẳng hàng
Cho hình bình hành ABCD tâm O. Xác định vị trí điểm M thỏa mãn \(\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{AM}\). Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, BC, CA và dựng điểm K sao cho \(\overrightarrow{MK}+\overrightarrow{CN}=\overrightarrow{0}\). Khi đó, điểm K trùng với
a) Cho tứ giác ABCD không phải là hình bình hành, AC cắt BD tại O có OB = OD. Gọi M, N lần lượt là trung điểm của AB và CD, MN cắt AC tại I. Chứng minh rằng \(\overrightarrow{MI}=\overrightarrow{IN}\)
b) Cho tứ giác ABCD có 2 đường chéo cắt nhau tại I. Biết \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\). Chứng minh rằng tứ giác ABCD là hình bình hành
Cho hình bình hành ABCD . Ba điểm M,N,P thỏa mãn \(\overrightarrow{MA}+3\overrightarrow{MB},2\overrightarrow{NB}+3\overrightarrow{NC},\overrightarrow{PM}+2\overrightarrow{PN}=\overrightarrow{0}\) Phân tích vecto AP theo hai vecto \(\overrightarrow{a}=\overrightarrow{AB},\overrightarrow{b}=\overrightarrow{BD}\). Ta được
cho hình bình hành ABCD tập hợp các điểm M thỏa mãn \(\overrightarrow{|MA}+\overrightarrow{MB}|=|\overrightarrow{MC}+\overrightarrow{MD}|\)
Cho tam giác ABC, M là điểm thỏa mãn
|2\(\overrightarrow{MA}\) + \(\overrightarrow{MB}\)|. Tập hợp điểm M là:
A. Là đỉnh thứ tư của hình bình hành dựng trên hai cạnh AB, AC
B. Đường trung trực của đoạn thẳng cố định
C. Đường thẳng đi qua trung điểm của AB và song song với BC D. Là đường tròn có bán kính bằng BC