Tìm x,y \(\in\) Z để \(\dfrac{n+5}{n+2}\) là một số nguyên ( n \(\ne\)-2)
1, x,y,z∈N*. CMR x+3z-y là hợp số biết `x^2+y^2=z^2`
2,Tìm n∈N* để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\)
3, CMR:\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\forall x\ne y,xy\ne0\)
2.
\(4n^3+n+3=4n^3+2n^2+2n-2n^2-n-1+4=2n\left(2n^2+n+1\right)-\left(2n^2+n+1\right)+4\)-Để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\) thì \(4⋮\left(2n^2+n+1\right)\)
\(\Leftrightarrow2n^2+n+1\in\left\{1;-1;2;-2;4;-4\right\}\) (do n là số nguyên)
*\(2n^2+n+1=1\Leftrightarrow n\left(2n+1\right)=0\Leftrightarrow n=0\) (loại) hay \(n=\dfrac{-1}{2}\) (loại)
*\(2n^2+n+1=-1\Leftrightarrow2n^2+n+2=0\) (phương trình vô nghiệm)
\(2n^2+n+1=2\Leftrightarrow2n^2+n-1=0\Leftrightarrow n^2+n+n^2-1=0\Leftrightarrow n\left(n+1\right)+\left(n+1\right)\left(n-1\right)=0\Leftrightarrow\left(n+1\right)\left(2n-1\right)=0\)
\(\Leftrightarrow n=-1\) (loại) hay \(n=\dfrac{1}{2}\) (loại)
\(2n^2+n+1=-2\Leftrightarrow2n^2+n+3=0\) (phương trình vô nghiệm)
\(2n^2+n+1=4\Leftrightarrow2n^2+n-3=0\Leftrightarrow2n^2-2n+3n-3=0\Leftrightarrow2n\left(n-1\right)+3\left(n-1\right)=0\Leftrightarrow\left(n-1\right)\left(2n+3\right)=0\)\(\Leftrightarrow n=1\left(nhận\right)\) hay \(n=\dfrac{-3}{2}\left(loại\right)\)
-Vậy \(n=1\)
1. \(x^2+y^2=z^2\)
\(\Rightarrow x^2+y^2-z^2=0\)
\(\Rightarrow\left(x-z\right)\left(x+z\right)+y^2=0\)
-TH1: y lẻ \(\Rightarrow x-z;x+z\) đều lẻ.
\(x+3z-y=x+z-y+2x\) chia hết cho 2. \(\Rightarrow\)Hợp số.
-TH2: y chẵn \(\Rightarrow\)1 trong hai biểu thức \(x-z;x+z\) chia hết cho 2.
*Xét \(\left(x-z\right)⋮2\):
\(x+3z-y=x-z+4z-y\) chia hết cho 2. \(\Rightarrow\)Hợp số.
*Xét \(\left(x+z\right)⋮2\):
\(x+3z-y=x+z+2z-y\) chia hết cho 2 \(\Rightarrow\)Hợp số.
Tìm n thuộc Z để\(\frac{n+5}{n+2}\left(n\ne-2\right)\) là một số nguyên
=\(\frac{n+2+3}{n+2}\)
= \(1+\frac{3}{n+2}\)
Để n\(\in\)Z thì 3\(⋮\)n-2 hay n-2 \(\in\)Ư(3)={ 1, -1, 3, -3}
Ta có bảng sau:
| |||||||||||
Vậy n\(\in\){1, -1, 3, 5} thì n là một số nguyên
lớp 6 nhé minh anh , từ chỗ n-2 là mình viết sai phải là n+ 2
Tìm n \(\in Z\) A=\(\dfrac{n+1}{n-2}\)(n\(\ne\) 2) có giá trị nguyên
b) Để A có giá trị nguyên thi n+1⋮n-2
n+3-2⋮n-2
n-2⋮n-2⇒3⋮n-2
n-2∈Ư(2)={1;-1;2;-2}
Vậy n ∈ {3;1;4;0}
Để A nguyên thì \(n+1⋮n-2\)
\(\Leftrightarrow3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow n\in\left\{3;1;5;-1\right\}\)
Câu 1: Cho biểu thức B = \(\frac{5}{n-3}\)( n \(\in\)Z, n \(\ne\)3)
Tìm tất cả các giá trị nguyên của n để B là số nguyên
Câu 2: Tìm các số nguyên tố x,y sao cho x2 + 117 = y2
Câu 3: Số 2100 viết trong hệ thập phân có bao nhiêu chữ số
Câu 1:
Để B là số nguyên
=>5 chia hết cho n-3 hay n-3 thuộc vào Ư(5)={1;5;-1;-5}
Ta có bảng:
n-3 | 1 | 5 | -1 | -5 |
n | 4 | 8 | 2 | -2 |
B | 5 | 1 | -5 | -1 |
=> n thuộc vào {4;8;2;-2} (thỏa mãn điều kiện n thuộc Z)
1, Tìm x; y; z \(\in N\) biết: xyz + xy +yz + zx + x + y + z = 2017
2, Cho x; y; z \(\in N\) thỏa mãn: \(\dfrac{x+y\sqrt{7}}{x+z\sqrt{7}}\) là một số hữu tỉ.
Tìm x; y; z để:
a) \(x^2+y^2+z^2\) là số nguyên tố
b) \(x^2-2y^2+z^2=143\)
Cho A=\(\frac{2n}{n-2}\)(n\(\in\)Z ,n\(\ne\)0).Tìm số nguyên n để A là giá trị nguyên
Ta có: \(A=\frac{2n}{n-2}\Rightarrow n>0\)
Lập luận
+ n lớn hơn không vì nếu n nhỏ hơn 0 thì \(\frac{2n}{n-2}\)sẽ trở thành \(\frac{2\left(-n\right)}{n-2}\) (vô lý)
=> n thuộc tập N*
Cho hàm số y = \(\left(\sqrt{2n+5}-2\right)x^2\) với n \(\ge\) \(-\dfrac{5}{2}\); n \(\ne-\dfrac{1}{2}\)
Tìm các giá trị của tham số n để hàm số:
a) Nghịch biến với mọi x < 0
b) Đồng biến với mọi x < 0
a) Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) nghịch biến với mọi x<0 thì
\(\sqrt{2n+5}-2>0\)
\(\Leftrightarrow\sqrt{2n+5}>2\)
\(\Leftrightarrow2n+5>4\)
\(\Leftrightarrow2n>-1\)
\(\Leftrightarrow n>-\dfrac{1}{2}\)
Kết hợp ĐKXĐ, ta được: \(n>-\dfrac{1}{2}\)
Vậy: Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) nghịch biến với mọi x<0 thì \(n>-\dfrac{1}{2}\)
b) Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) đồng biến với mọi x<0 thì \(\sqrt{2n+5}-2< 0\)
\(\Leftrightarrow\sqrt{2n+5}< 2\)
\(\Leftrightarrow2n+5< 4\)
\(\Leftrightarrow2n< -1\)
\(\Leftrightarrow n< -\dfrac{1}{2}\)
Kết hợp ĐKXĐ, ta được: \(-\dfrac{5}{2}\le n< \dfrac{1}{2}\)
Vậy: Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) đồng biến với mọi x<0 thì \(-\dfrac{5}{2}\le n< \dfrac{1}{2}\)
a,Nghịch biến khi `x<0`
`<=>\sqrt{2n+5}-2>0(x>=-5/2)`
`<=>\sqrt{2n+5}>2`
`<=>2n+5>4`
`<=>2n> -1`
`<=>n> -1/2`
Kết hợp ĐKXĐ:
`=>n>1/2`
b,Đồng biến với mọi `x<0`
`<=>\sqrt{2n+5}-2<0`
`<=>\sqrt{2n+5}<2`
`<=>2n+5<4`
`<=>2n< -1`
`<=>n< -1/2`
Kết hợp ĐKXĐ:
`=>-5/2<x< -1/2`
Tìm số nguyên n để A=\(\dfrac{n+1}{n-2}\)có giá trị nguyên, với n\(\ne\)2
để a là số nguyên thì n+1⋮n-2
n-2+3⋮n-2
n-2⋮n-2 ⇒ 3⋮n-2 n-2∈Ư(3)
Ư(3)={1;3;-1;-3}
Vậy n ∈{3;5;1;-1}
Để A là số nguyên thì \(n+1⋮n-2\)
\(\Leftrightarrow n-2+3⋮n-2\)
mà \(n-2⋮n-2\)
nên \(3⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(3\right)\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)(thỏa ĐK)
Vậy: Để A nguyên thì \(n\in\left\{3;1;5;-1\right\}\)
ta có :n+1/n-2=n-2+3
=>n+1 thuộc Ư(3)
=> n +1 thuộc{1;3;-1;-3}
ta có bảng:
n+1 | 1 | -1 | -3 | 3 |
n | 0 | -2 | -4 | 2 |
ĐK | tm | tm | tm | tm |
Tìm số nguyên n\(\in Z\) để \(\dfrac{3n+1}{n+1}\) là số nguyên
Để 3n+1/n+1 là số nguyên thì \(3n+3-2⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{0;-2;1;-3\right\}\)
3n + 1 = (3n + 3) - 2 = 3(n + 1) - 2
3(n + 1) ⋮ n + 1
=> để (3n + 1)/(n + 1) ∈ Z <=> 2 ⋮ n + 1
<=> n + 1 ∈ Ư(2) = {±1; ±2}
=> ta có bảng:
n+1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
vậy để (3n + 1)/(n + 1) ∈ Z thì n ∈ {-3; -2; 0; 1}