Xét tính đơn điệu và tìm cực trị của hàm số:
a) y=x+\(\sqrt{9-x^2}\)
b) y=\(\dfrac{-x^2-x-2}{x+2}\)
Xét các khoảng đơn điệu và tìm cực trị của hàm số
y = x + \(\sqrt{8-x^2}\)
Tập xác định: D=\(\left[-2\sqrt{2};2\sqrt{2}\right]\).
\(y'=1-\dfrac{x}{\sqrt{8-x^2}}\) = 0 \(\Rightarrow\) x=2.
Bảng biến thiên:
Vậy hàm số đã cho đồng biến trên khoảng (\(-2\sqrt{2}\);2), nghịch biến trên khoảng (2;\(2\sqrt{2}\)) và yCĐ=4 (tại x=2).
Tham khảo: Đồ thị:
Bài 1: Xét tính đơn điệu của hàm số \(y=f(x)\) khi biết đạo hàm của hàm số là:
a) \(f'(x)=(x+1)(1-x^2)(2x-1)^3\)
b) \(f'(x)=(x+2)(x-3)^2(x-4)^3\)
Bài 2: Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)=x(x+1)(x-2)\). Xét tính biến thiên của hàm số:
a) \(y=f(2-3x)\)
b) \(y=f(x^2+1)\)
c) \(y=f(3x+1)\)
Xét tính đơn điệu của hàm số:
a, f(x) = x + 2cosx trên (0;2π)
b, f(x) = |x2 - 3x + 2|
xét tính đơn điệu của các hàm số sau :
a) y=1/2x+5
b)y=3x-1
c)y=|2x-1|
d)y=\(\sqrt{x^2}+6x+9\)
e)y=|1-x| +|2x+4|
f) y=\(\sqrt{x^2-4+4}\)-2|x-1|
tìm TXĐ của hàm số:
a) y=\(\dfrac{\sqrt{x^2-x+1}}{x-3}\)
b)y=\(\dfrac{\sqrt{5-2x}}{\left(x-2\right)\sqrt{x-1}}\)
a: ĐKXĐ: x\(\in\)R\{3}
b: ĐKXĐ: \(\left\{{}\begin{matrix}x>1\\x\ne2\end{matrix}\right.\)
xét tính đơn điệu của hàm số y=\(\dfrac{-x^2+2x-1}{x+2}\)
TXĐ: D = R \ {-2}
Ta có: \(y'=\dfrac{\left(-2x+2\right)\left(x+2\right)-\left(-x^2+2x-1\right)}{\left(x+2\right)^2}=\dfrac{-x^2-4x+5}{\left(x+2\right)^2}\)
\(y'=0\Rightarrow-x^2-4x+5=0\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
⇒ Hàm số y đồng biến trên (-5, -2) và (-2, 1)
Hàm số y nghịch biến trên (-∞, -5) và (1, +∞)
Xét tính đơn điệu và vẽ đồ thị hàm số sau:
A)y=2x+1
B)y=-x+1
C)y=\(\dfrac{1-x}{2}\)
D)y=\(\dfrac{-x}{4}\)+2
a: Hàm số đồng biến trên R
b: Hàm số nghịch biến trên R
Xét tính đơn điệu của các hàm số :
a) \(y=\sqrt{25-x^2}\)
b) \(y=\dfrac{\sqrt{x}}{x+100}\)
c) \(y=\dfrac{x}{\sqrt{16-x^2}}\)
d) \(y=\dfrac{x^3}{\sqrt{x^2-6}}\)
tìm cực trị của các hàm số sau:
1. \(y=\sqrt{x-3}+\sqrt{6-x}\)
2. \(y=x-3+\dfrac{9}{x-2}\)
3. \(y=x\sqrt{3-x}\)
4. \(y=\dfrac{x}{x^2+4}\)
5. \(y=\dfrac{x^2+8x-24}{x^2-4}\)
Xét trên các miền xác định của các hàm (bạn tự tìm miền xác định)
a.
\(y'=\dfrac{1}{2\sqrt{x-3}}-\dfrac{1}{2\sqrt{6-x}}=\dfrac{\sqrt{6-x}-\sqrt{x-3}}{2\sqrt{\left(x-3\right)\left(6-x\right)}}\)
\(y'=0\Rightarrow6-x=x-3\Rightarrow x=\dfrac{9}{2}\)
\(x=\dfrac{9}{2}\) là điểm cực đại của hàm số
b.
\(y'=1-\dfrac{9}{\left(x-2\right)^2}=0\Rightarrow\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
\(x=-1\) là điểm cực đại, \(x=5\) là điểm cực tiểu
c.
\(y'=\sqrt{3-x}-\dfrac{x}{2\sqrt{3-x}}=0\Rightarrow2\left(3-x\right)-x=0\)
\(\Rightarrow x=2\)
\(x=2\) là điểm cực đại
d.
\(y'=\dfrac{-x^2+4}{\left(x^2+4\right)^2}=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(x=-2\) là điểm cực tiểu, \(x=2\) là điểm cực đại
e.
\(y'=\dfrac{-8\left(x^2-5x+4\right)}{\left(x^2-4\right)^2}=0\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
\(x=1\) là điểm cực tiểu, \(x=4\) là điểm cực đại