Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hương Giang
Xem chi tiết
Ma Tiến Khôi
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 6 2023 lúc 8:47

2:

a: =>x-4>=0

=>x>=4

b: =>x+1>0

=>x>-1

Ngoc Anh Thai
Xem chi tiết
hnamyuh
26 tháng 3 2021 lúc 10:21

Bài 4 :

24 phút = \(\dfrac{24}{60} = \dfrac{2}{5}\) giờ

Gọi thời gian dự định đi từ A đến B là x(giờ) ; x > 0 

Suy ra quãng đường AB là 36x(km)

Khi vận tốc sau khi giảm là 36 -6 = 30(km/h)

Vì giảm vận tốc nên thời gian đi hết AB là x + \(\dfrac{2}{5}\)(giờ)

Ta có phương trình: 

\(36x = 30(x + \dfrac{2}{5})\\ \Leftrightarrow x = 2\)

Vậy quãng đường AB dài 36.2 = 72(km)

 

꧁༺β£ɑℭƙ £❍ζʊꜱ༻꧂
26 tháng 3 2021 lúc 10:37

undefined

hnamyuh
26 tháng 3 2021 lúc 10:46

Bài 3 : 

\(A = -x^2 + 2x + 9 = -(x^2 -2x - 9) \\= -(x^2 - 2x + 1 + 10) = -(x^2 -2x + 1)+ 10\\=-(x-1)^2 + 10\)

Vì : \((x-1)^2 \geq 0\) ∀x \(\Leftrightarrow -(x-1)^2 \)≤ 0 ∀x \(\Leftrightarrow -(x-1)^2 + 10\) ≤ 10

Dấu "=" xảy ra khi và chỉ khi x - 1 = 0 ⇔ x = 1

Vậy giá trị nhỏ nhất của A là 10 khi x = 1

 

Hiếu Nguyễn
Xem chi tiết
Xyz OLM
28 tháng 8 2023 lúc 21:34

ĐKXĐ : \(x\notin\left\{0;-1;-2;-3;-4\right\}\)

Ta có \(\dfrac{1}{x}+\dfrac{1}{x+1}+\dfrac{1}{x+2}+\dfrac{1}{x+3}+\dfrac{1}{x+4}=0\)

\(\Leftrightarrow\dfrac{2x+4}{x.\left(x+4\right)}+\dfrac{2x+4}{\left(x+1\right).\left(x+3\right)}+\dfrac{1}{x+2}=0\)

\(\Leftrightarrow\dfrac{2x+4}{\left(x+2\right)^2-4}+\dfrac{2x+4}{\left(x+2\right)^2-1}+\dfrac{1}{x+2}=0\) (*)

Đặt x + 2 = a \(\left(a\ne0\right)\) 

(*) \(\Leftrightarrow\dfrac{2a}{a^2-4}+\dfrac{2a}{a^2-1}+\dfrac{1}{a}=0\)

\(\Leftrightarrow\dfrac{2}{a-\dfrac{4}{a}}+\dfrac{2}{a-\dfrac{1}{a}}+\dfrac{1}{a}=0\) (**)

Đặt \(\dfrac{1}{a}=b\left(b\ne0\right)\) \(\Rightarrow ab=1\)

Ta được (**) \(\Leftrightarrow\dfrac{2}{a-4b}+\dfrac{2}{a-b}+b=0\)

\(\Leftrightarrow\dfrac{2b}{1-4b^2}+\dfrac{2b}{1-b^2}+b=0\)

\(\Leftrightarrow\dfrac{2}{1-4b^2}+\dfrac{2}{1-b^2}=-1\)

\(\Rightarrow4-10b^2=-4b^4+5b^2-1\)

\(\Leftrightarrow4b^4-15b^2+5=0\) (***)

Đặt b2 = t > 0

Ta có (***) <=> \(4t^2-15t+5=0\Leftrightarrow t=\dfrac{15\pm\sqrt{145}}{8}\) (tm)

\(\Leftrightarrow b=\pm\sqrt{\dfrac{15\pm\sqrt{145}}{8}}\) 

mà x + 2 = a ; ab = 1 

nên \(x=\pm\sqrt{\dfrac{8}{15\pm\sqrt{145}}}-2\)

Thử lại ta có phương trình có 4 nghiệm như trên

 

Quỳnh Anh
Xem chi tiết
Lê Thị Cẩm Giang
Xem chi tiết
Trần Tuấn Hoàng
28 tháng 4 2023 lúc 9:12

\(\dfrac{1}{x^2+2x}+\dfrac{1}{x^2+6x+8}+\dfrac{1}{x^2+10x+24}+\dfrac{1}{x^2+14x+48}=\dfrac{4}{105}\)

\(\Leftrightarrow\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}=\dfrac{8}{105}\)

\(\Leftrightarrow\left(\dfrac{1}{x}-\dfrac{1}{x+2}\right)+\left(\dfrac{1}{x+2}-\dfrac{1}{x+4}\right)+\left(\dfrac{1}{x+4}-\dfrac{1}{x+6}\right)+\left(\dfrac{1}{x+6}-\dfrac{1}{x+8}\right)=\dfrac{8}{105}\)

\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{8}{105}\)

\(\Leftrightarrow\dfrac{8}{x\left(x+8\right)}=\dfrac{8}{105}\)

\(\Leftrightarrow x\left(x+8\right)=105\)

\(\Leftrightarrow x^2+8x-105=0\)

\(\Leftrightarrow x^2-7x+15x-105=0\)

\(\Leftrightarrow x\left(x-7\right)+15\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-15\end{matrix}\right.\)

Thử lại ta có nghiệm của phương trình trên là \(x=7\text{v}à\text{x}=15\)

 

XiangLin Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 2 2022 lúc 7:08

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)-\left(x-2\right)\left(x+1\right)+14=0\)

\(\Leftrightarrow x^2-4x+3-\left(x^2-x-2\right)+14=0\)

\(\Leftrightarrow x^2-4x+17-x^2+x+2=0\)

=>-3x+19=0

hay x=19/3(nhận)

ILoveMath đã xóa
ILoveMath
26 tháng 2 2022 lúc 7:24

ĐKXĐ:\(\left\{{}\begin{matrix}x\ne-1\\x\ne3\end{matrix}\right.\)

\(\dfrac{x-1}{x+1}-\dfrac{x-2}{x-3}+\dfrac{14}{x^2-2x-3}=0\\ \Leftrightarrow\dfrac{\left(x-3\right)\left(x-1\right)}{\left(x-3\right)\left(x+1\right)}-\dfrac{\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-3\right)}+\dfrac{14}{\left(x+1\right)\left(x-3\right)}=0\\ \Leftrightarrow\dfrac{\left(x-3\right)\left(x-1\right)-\left(x+1\right)\left(x-2\right)+14}{\left(x+1\right)\left(x-3\right)}=0\)

\(\Rightarrow\left(x^2-4x+3\right)-\left(x^2-x-2\right)+14=0\\ \Leftrightarrow x^2-4x+3-x^2+x+2+14=0\)

\(\Leftrightarrow-3x+19=0\\ \Leftrightarrow x=\dfrac{19}{3}\left(tm\right)\)

Vậy pt có tập nghiệm \(S=\left\{\dfrac{19}{3}\right\}\)

Thiên Yết
Xem chi tiết
títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2023 lúc 20:16

a:

ĐKXĐ: \(x\notin\left\{\dfrac{3}{2};1\right\}\)

 \(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}=\dfrac{x^2-4x+4}{2x^2-2x-3x+3}\)

=>\(y=\dfrac{x^2-4x+4}{2x^2-5x+3}\)

=>\(y'=\dfrac{\left(x^2-4x+4\right)'\left(2x^2-5x+3\right)-\left(x^2-4x+4\right)\left(2x^2-5x+3\right)'}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{\left(2x-4\right)\left(2x^2-5x+3\right)-\left(2x-5\right)\left(x^2-4x+4\right)}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{4x^3-10x^2+6x-8x^2+20x-12-2x^3+8x^2-8x+5x^2-20x+20}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{2x^3-5x^2-2x+8}{\left(2x^2-5x+3\right)^2}\)

b:

ĐKXĐ: x<>-3

 \(y=\left(x+3\right)+\dfrac{4}{x+3}\)

=>\(y'=\left(x+3+\dfrac{4}{x+3}\right)'=1+\left(\dfrac{4}{x+3}\right)'\)

\(=1+\dfrac{4'\left(x+3\right)-4\left(x+3\right)'}{\left(x+3\right)^2}\)

=>\(y'=1+\dfrac{-4}{\left(x+3\right)^2}=\dfrac{\left(x+3\right)^2-4}{\left(x+3\right)^2}\)

y'=0

=>\(\left(x+3\right)^2-4=0\)

=>\(\left(x+3+2\right)\left(x+3-2\right)=0\)

=>(x+5)(x+1)=0

=>x=-5 hoặc x=-1

c:

ĐKXĐ: x<>-2

 \(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\)

=>\(y=\dfrac{5x^2+5x-x-1}{x+2}=\dfrac{5x^2+4x-1}{x+2}\)

=>\(y'=\dfrac{\left(5x^2+4x-1\right)'\left(x+2\right)-\left(5x^2+4x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{\left(5x+4\right)\left(x+2\right)-\left(5x^2+4x-1\right)}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{5x^2+10x+4x+8-5x^2-4x+1}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{10x+9}{\left(x+2\right)^2}\)

\(y'\left(-1\right)=\dfrac{10\cdot\left(-1\right)+9}{\left(-1+2\right)^2}=\dfrac{-1}{1}=-1\)

d: 

ĐKXĐ: x<>2

\(y=x-2+\dfrac{9}{x-2}\)

=>\(y'=\left(x-2+\dfrac{9}{x-2}\right)'=1+\left(\dfrac{9}{x-2}\right)'\)

\(=1+\dfrac{9'\left(x-2\right)-9\left(x-2\right)'}{\left(x-2\right)^2}\)

=>\(y'=1+\dfrac{-9}{\left(x-2\right)^2}=\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}\)

y'=0

=>\(\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}=0\)

=>\(\left(x-2\right)^2-9=0\)

=>(x-2-3)(x-2+3)=0

=>(x-5)(x+1)=0

=>x=5 hoặc x=-1

illumina
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2023 lúc 21:03

ĐKXĐ: x<>-1

\(\dfrac{x^2}{\left(x+1\right)^2}+\dfrac{x}{x+1}-2=0\)

\(\Leftrightarrow\left(\dfrac{x}{x+1}\right)^2+\left(\dfrac{x}{x+1}\right)-2=0\)

=>\(\left(\dfrac{x}{x+1}\right)^2+2\left(\dfrac{x}{x+1}\right)-\dfrac{x}{x+1}-2=0\)

=>\(\dfrac{x}{x+1}\left(\dfrac{x}{x+1}+2\right)-\left(\dfrac{x}{x+1}+2\right)=0\)

=>\(\left(\dfrac{x}{x+1}+2\right)\left(\dfrac{x}{x+1}-1\right)=0\)

=>\(\dfrac{x+2x+2}{x+1}\cdot\dfrac{x-x-1}{x+1}=0\)

=>\(\dfrac{3x+2}{x+1}\cdot\dfrac{-1}{x+1}=0\)

=>3x+2=0

=>x=-2/3(nhận)