tìm số nghiệm nguyên dương của phương trình sau
\(\sin\left[\dfrac{\pi}{4}\left(3x-\sqrt{9x^2-16x-80}\right)\right]=0\)
Tìm số nghiệm nguyên dương của phương trình \(\sin\left[\dfrac{\pi}{4}\left(3x-\sqrt{9x^2-16x-80}\right)\right]=0\)
Nghiệm của phương trình \(sin^4x+cos^4x+cos\left(x-\dfrac{\pi}{4}\right).sin\left(3x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+\dfrac{1}{2}sin\left(4x-\dfrac{\pi}{2}\right)+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)
\(\Leftrightarrow1-\dfrac{1}{2}sin^22x-\dfrac{1}{2}cos4x+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)
\(\Leftrightarrow1-\dfrac{1}{2}\left(\dfrac{1-cos4x}{2}\right)-\dfrac{1}{2}cos4x+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)
\(\Leftrightarrow-\dfrac{3}{4}-\dfrac{1}{4}cos4x+\dfrac{1}{2}sin2x=0\)
\(\Leftrightarrow-\dfrac{3}{4}-\dfrac{1}{4}\left(1-2sin^22x\right)+\dfrac{1}{2}sin2x=0\)
\(\Leftrightarrow...\)
1) nghiệm dương nhỏ nhất của phương trình \(cot\left(x-\dfrac{\pi}{6}\right)=\sqrt{3}\) là
2) phương trình \(sin\left(\dfrac{2x}{3}+\dfrac{\pi}{3}\right)=0\) có nghiệm là
3) họ nghiệm của phương trình \(cot\)(2x - 30 độ) = \(\sqrt{3}\) là
Tìm nghiệm của các phương trinh:
1,\(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
2,\(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}\left(1+cot2xcotx\right)=0\)
3,\(cos^4x+sin^4x+cos\left(x-\dfrac{\pi}{4}\right)sin\left(3x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)
4,\(cos5x+cos2x+2sin3xsin2x=0\) trên \(\left[0;2\pi\right]\)
5,\(\dfrac{cos\left(cosx+2sinx\right)+3sinx\left(sinx+\sqrt{2}\right)}{sin2x-1}=1\)
6,\(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
7,\(cos\left(2x+\dfrac{\pi}{4}\right)+cos\left(2x-\dfrac{\pi}{4}\right)+4sinx=2+\sqrt{2}\left(1-sinx\right)\)
1, \(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{sinx+2sinx.sin2x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{sinx+2sinx.sin2x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{sinx+cosx-cos3x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{sinx+cosx+sin3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{2sin2x.cosx+cosx}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{cosx\left(2sin2x+1\right)}{1+2sin2x}=\dfrac{2+2cos^2x}{5}\)
⇒ cosx = \(\dfrac{2+2cos^2x}{5}\)
⇔ 2cos2x - 5cosx + 2 = 0
⇔ \(\left[{}\begin{matrix}cosx=2\\cosx=\dfrac{1}{2}\end{matrix}\right.\)
⇔ \(x=\pm\dfrac{\pi}{3}+k.2\pi\) , k là số nguyên
2, \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\left(1+cot2x.cotx\right)=0\)
⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\dfrac{cos2x.cosx+sin2x.sinx}{sin2x.sinx}=0\)
⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\dfrac{cosx}{sin2x.sinx}=0\)
⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2cosx}{2cosx.sin^4x}=0\)
⇒ \(48-\dfrac{1}{cos^4x}-\dfrac{1}{sin^4x}=0\). ĐKXĐ : sin2x ≠ 0
⇔ \(\dfrac{1}{cos^4x}+\dfrac{1}{sin^4x}=48\)
⇒ sin4x + cos4x = 48.sin4x . cos4x
⇔ (sin2x + cos2x)2 - 2sin2x. cos2x = 3 . (2sinx.cosx)4
⇔ 1 - \(\dfrac{1}{2}\) . (2sinx . cosx)2 = 3(2sinx.cosx)4
⇔ 1 - \(\dfrac{1}{2}sin^22x\) = 3sin42x
⇔ \(sin^22x=\dfrac{1}{2}\) (thỏa mãn ĐKXĐ)
⇔ 1 - 2sin22x = 0
⇔ cos4x = 0
⇔ \(x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\)
3, \(sin^4x+cos^4x+sin\left(3x-\dfrac{\pi}{4}\right).cos\left(x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)
⇔ \(\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+\dfrac{1}{2}sin\left(4x-\dfrac{\pi}{2}\right)+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)
⇔ \(1-\dfrac{1}{2}sin^22x+\dfrac{1}{2}sin2x-\dfrac{1}{2}cos4x-\dfrac{3}{2}=0\)
⇔ \(\dfrac{1}{2}sin2x-\dfrac{1}{2}cos4x-\dfrac{1}{2}-\dfrac{1}{2}sin^22x=0\)
⇔ sin2x - sin22x - (1 + cos4x) = 0
⇔ sin2x - sin22x - 2cos22x = 0
⇔ sin2x - 2 (cos22x + sin22x) + sin22x = 0
⇔ sin22x + sin2x - 2 = 0
⇔ \(\left[{}\begin{matrix}sin2x=1\\sin2x=-2\end{matrix}\right.\)
⇔ sin2x = 1
⇔ \(2x=\dfrac{\pi}{2}+k.2\pi\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\)
4, cos5x + cos2x + 2sin3x . sin2x = 0
⇔ cos5x + cos2x + cosx - cos5x = 0
⇔ cos2x + cosx = 0
⇔ \(2cos\dfrac{3x}{2}.cos\dfrac{x}{2}=0\)
⇔ \(cos\dfrac{3x}{2}=0\)
⇔ \(\dfrac{3x}{2}=\dfrac{\pi}{2}+k\pi\)
⇔ x = \(\dfrac{\pi}{3}+k.\dfrac{2\pi}{3}\)
Do x ∈ [0 ; 2π] nên ta có \(0\le\dfrac{\pi}{3}+k\dfrac{2\pi}{3}\le2\pi\)
⇔ \(-\dfrac{1}{2}\le k\le\dfrac{5}{2}\). Do k là số nguyên nên k ∈ {0 ; 1 ; 2}
Vậy các nghiệm thỏa mãn là các phần tử của tập hợp
\(S=\left\{\dfrac{\pi}{3};\pi;\dfrac{5\pi}{3}\right\}\)
5, \(\dfrac{cos^2x+sin2x+3sin^2x+3\sqrt{2}sinx}{sin2x-1}=1\)
⇒ \(cos^2x+sin2x+3sin^2x+3\sqrt{2}sinx=sin2x-1\)
⇒ cos2x + 3sin2x + 3\(\sqrt{2}\)sin2x + 1 = 0
⇔ 2 + 2sin2x + 3\(\sqrt{2}\)sin2x = 0
⇔ 2 + 1 - cos2x + 3\(\sqrt{2}\) sin2x = 0
⇔ \(3\sqrt{2}sin2x-cos2x=-1\)
Còn lại tự giải
7, \(cos\left(2x+\dfrac{\pi}{4}\right)+cos\left(2x-\dfrac{\pi}{4}\right)+4sinx=2+\sqrt{2}\left(1-sinx\right)\)
⇔ \(2cos2x.cos\dfrac{\pi}{4}+4sinx=2+\sqrt{2}\left(1-sinx\right)\)
⇔ \(\sqrt{2}cos2x+4sinx=2+\sqrt{2}-\sqrt{2}sinx\)
Dùng công thức : cos2x = 1 - 2sin2x đưa về phương trình bậc 2 ẩn sinx
Tìm nghiệm dương nhỏ nhất của phương trình
\(\cos\pi\left(x^2+2x-\dfrac{1}{2}\right)=\sin\left(\pi x^2\right)\)
\(\Leftrightarrow cos\left(\pi x^2+2\pi x-\dfrac{\pi}{2}\right)=sin\left(\pi x^2\right)\)
\(\Leftrightarrow sin\left(\pi x^2+2\pi x\right)=sin\left(\pi x^2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\pi x^2+2\pi x=\pi x^2+k2\pi\\\pi x^2+2\pi x=\pi-\pi x^2+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\left(1\right)\\2x^2+2x-2k-1=0\left(2\right)\end{matrix}\right.\)
(1) có nghiệm dương nhỏ nhất \(x=1\)
Xét (2), để (2) có nghiệm \(\Rightarrow\Delta'=1+2\left(2k+1\right)\ge0\) \(\Rightarrow k\ge0\)
Khi đó (2) có 2 nghiệm: \(\left[{}\begin{matrix}x=\dfrac{-1-\sqrt{4k+3}}{2}< 0\\x=\dfrac{-1+\sqrt{4k+3}}{2}\ge\dfrac{\sqrt{3}-1}{2}\end{matrix}\right.\)
\(\Rightarrow\) Nghiệm dương nhỏ nhất của pt đã cho là \(x=\dfrac{\sqrt{3}-1}{2}\)
Phương trình \(sin\left(x^2-5x\right)=\dfrac{-\sqrt{3}}{2}\) có bao nhiêu nghiệm thuộc \(\left[0;\dfrac{\pi}{2}\right]\)
Số nghiệm của phương trình \(\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\) trên đoạn \(\left[ {0;\pi } \right]\) là:
A.4
B.1
C.2
D.3
Ta có
\(\begin{array}{l}\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\\ \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \sin \left( {\frac{\pi }{4}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{4}{\rm{ }} = {\rm{ }}\frac{\pi }{4} + k2\pi ;k \in Z\\x + \frac{\pi }{4}{\rm{ }} = {\rm{ }}\pi {\rm{ - }}\frac{\pi }{4} + k2\pi ;k \in Z\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = {\rm{ }}k2\pi ;k \in Z\\x{\rm{ }} = {\rm{ }}\frac{\pi }{2} + k2\pi ;k \in Z\end{array} \right.\end{array}\)
Mà \(x \in \left[ {0;\pi } \right]\) nên \(x \in \left\{ {0;\frac{\pi }{2}} \right\}\)
Vậy phương trình đã cho có số nghiệm là 2.
Chọn C
Tìm nghiệm nguyên của phương trình \(\left(3x-16y-24\right)^2=9x^2+16x+32\)
\(\Leftrightarrow9x^2-6x\left(16y+24\right)+\left(16y+24\right)^2=9x^2+16x+32\)
\(\Leftrightarrow x\left(3y+5\right)=8y^2+24y+17\)
\(\Leftrightarrow x=\dfrac{8y^2+24y+17}{3y+5}\in Z\)
\(\Rightarrow9x=\dfrac{9\left(8y^2+24y+17\right)}{3y+5}\in Z\)
\(\Rightarrow24y+62-\dfrac{157}{3y+5}\in Z\)
\(\Rightarrow3y+5=Ư\left(157\right)=\left\{-157;-1;1;157\right\}\)
\(\Rightarrow y=...\)
Giải phương trình: \(cos\left(3x+\dfrac{\pi}{6}\right)-sin\left(\dfrac{\pi}{3}-3x\right)=\sqrt{3}\)
Để giải phương trình này, chúng ta sẽ sử dụng các công thức chuyển đổi của hàm lượng giác để làm cho phương trình có dạng đơn giản hơn.Trước tiên, chúng ta sẽ sử dụng công thức chuyển đổi:sin(π/3 - 3x) = sin(π/3)cos(3x) - cos(π/3)sin(3x)= (√3/2)cos(3x) - (1/2)sin(3x)Sau đó, phương trình trở thành:cos(3x + π/6) - (√3/2)cos(3x) + (1/2)sin(3x) = √3Tiếp theo, chúng ta sẽ sử dụng công thức cộng hai cosin và sin:cos(a + b) = cos(a)cos(b) - sin(a)sin(b)sin(a + b) = sin(a)cos(b) + cos(a)sin(b)Áp dụng công thức này, phương trình trở thành:cos(3x)cos(π/6) - sin(3x)sin(π/6
\(cos\left(3x+\dfrac{pi}{6}\right)-sin\left(\dfrac{pi}{3}-3x\right)=\sqrt{3}\)
=>\(cos\left(3x+\dfrac{pi}{6}\right)-cos\left(\dfrac{pi}{2}-\dfrac{pi}{3}+3x\right)=\sqrt{3}\)
=>\(cos\left(3x+\dfrac{pi}{6}\right)-cos\left(3x+\dfrac{pi}{6}\right)=\sqrt{3}\)
=>0x=căn 3(vô lý)