Chứng minh rằng:
Đa thức x10 - y10 chia hết cho đa thức x4 +x3y +x2y2 + xy3 +y4
Chứng minh rằng: (x – y)(x4 + x3y + x2y2 + xy3 + y4) = x5 – y5
\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
Ta có VT:
\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(=x.x^4+x.x^3y+x.x^2y^2+x.xy^3+x.y^4-y.x^4-y.x^3y-y.x^2y^2-y.xy^3-y.y^4\)
\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)
\(=x^5-y^5\)
VT=VP
Vậy:...
Chứng minh rằng với mọi x, y ta luôn có:
( x 4 - x 3 y + x 2 y 2 - xy 3 + y 4 ) ( x + y ) = x 5 + y 5 .
Thực hiện phép nhân đa thức với đa thức ở vế trái
=> VT = VP (đpcm)
a) (x-y)(x4+x3y+x2y2+xy3+y4) = x5 - y5
b) (x + y)(x4 - x3y + x2y2 - xy3 + y4) = x5 + y5
c) (a +b)(a3 - a2b + ab2 - b3) = a4 - b4
d) (a + b)(a2 - ab + b2) = a3 + b3
a) (x-y)(x4+x3y+x2y2+xy3+y4) = x(x4+x3y+x2y2+xy3+y4)-y(x4+x3y+x2y2+xy3+y4) =(x5+x4y+x3y2+x2y2+xy4)-(x4y+x3y2+x2y2+xy4+y5) = x5+x4y+x3y2+x2y2+xy4-x4y-x3y2-x2y2-xy4-y5 =x5-y5⇒Điều cần chứng minh
Các câu b d tương tự
Kết quả của phép chia ( x 4 – x 3 y + x 2 y 2 – x y 3 ) : ( x 2 + y 2 ) là
A. (x – y)
B. x(x – y)
C. x 2 – y
D. x 2 + xy
Ta có
x 4 – x 3 y + x 2 y 2 – x y 3 = x 4 + x 2 y 2 – ( x 3 y + x y 3 ) = x 2 ( x 2 + y 2 ) – x y ( x 2 + y 2 ) = ( x 2 + y 2 ) ( x 2 – x y ) = ( x 2 + y 2 ) x ( x – y ) N ê n ( x 4 – x 3 y + x 2 y 2 – x y 3 ) : ( x 2 + y 2 ) = ( x 2 + y 2 ) x ( x – y ) : ( x 2 + y 2 ) = x ( x – y )
Đáp án cần chọn là : B
phân tích đa thức thành nhân tử: x4 +x2y2+y4
x⁴ + x²y² +y⁴
= (x²)² + x²y² + (y²)²
= (x²)² + x²y² + (y²)² + x²y² - x²y²
= (x²)² + 2 x²y² + (y²)² - x²y²
= (x² + y²)²- (xy)²
=(x² + y² + xy)(x² + y² - xy)
Tìm a để đa thức P(x) chia hết cho đa thức Q(x) biết
P(x) = x4-5x2+4x+a
Q(x) = 2x+1
b. Chứng minh rằng:
n3 + 6n2 + 8n chia hết cho 48 với mọi n chẵn
a, Để \(P\left(x\right)⋮Q\left(x\right)\Leftrightarrow P\left(-\dfrac{1}{2}\right)=\dfrac{1}{16}-\dfrac{5}{4}-2+a=0\Leftrightarrow a=\dfrac{51}{16}\)
b, \(n^3+6n^2+8n=n\left(n^2+6n+8\right)=n\left(n+2\right)\left(n+4\right)\)
Với n chẵn thì 3 số này là 3 số chẵn lt nên chia hết cho \(2\cdot4\cdot6=48\)
a, P(x):Q(x)=1/2x^3-1/4x^2-19/8x+51/16(dư a-51/16)=>Để P(x) chia hết cho Q(x) thì a-51/16 phải bằng 0 => a=51/16
b, n3 + 6n2 + 8n= n(n2 +6n +8)
= n(n2 + 2n + 4n + 8)
= n[ n(n + 2) + 4(n + 2) ]
= n(n + 2)(n + 4)
Vì n là số chẵn nên đặt n=2k (k thuộc Z) ta được:
2k(2k + 2)(2k + 4)
=8k(k + 1)(k +2)
Vì k, k+1, k+2 là ba số tự nhiên liên tiếp nên có một sò chia hết cho 2 và một sồ chia hết cho 3 => k(k+1)(k+4)⋮6
=> 8k(k+1)(k+4)⋮48 (đpcm)
Cho đa thức M = 7 x 6 - 2 / 5 x 3 y + y 4 - x 4 y 4 + 1 . Bậc của đa thức M là:
A. 5
B. 6
C. 7
D. 8
Chứng minh rằng đa thức x4 + 2x3 - x2 - 2x chia hết cho 24 với mọi x thuộc Z
giúp mk nhanh vs ạ
\(=x^3\left(x+2\right)-x\left(x+2\right)\)
\(=\left(x+2\right)\cdot x\cdot\left(x+1\right)\left(x-1\right)\)
Vì đây là tích của bốn số nguyên liên tiếp
nên \(\left(x+2\right)\cdot x\cdot\left(x+1\right)\cdot\left(x-1\right)⋮24\)
Bài 10: Chứng minh rằng nếu a = x3y; b = x2y2; c = xy3 thì với bất kì số hữu tỉ x và y nào ta cũng có: ax + b2 – 2x4y4 = 0 ?
BÀI TẬP PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP ĐẶT NHÂN TỬ CHUNG
1) xy3 – x3y
2) 15xy + 20x2 – 30x
3)6x – 3xy
4)x3 + 2x2 + x
5)4x3 – 12x2 + 9x
6)2x2y + 4xy2 – 10 x3y2
7)x4 + 2x3 + x2
11)x(x – 1) – y(1 – x)
1, \(xy^3-x^3y=xy\left(y^2-x^2\right)=xy\left(y-x\right)\left(x+y\right)\)
2, \(5x\left(3y+4x-6\right)\)
3, \(3x\left(2-y\right)\)
4, \(x\left(x^2+2x+1\right)=x\left(x+1\right)^2\)
5, \(x\left(4x^2-12x+9\right)=x\left(2x-3\right)^2\)
6, \(2xy\left(x+2y-5x^2y\right)\)
7, \(x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)
11, \(\left(x+y\right)\left(x-1\right)\)
\(1,xy^3-x^3y=xy\left(y^2-x^2\right)=xy\left(y-x\right)\left(y+x\right)\\ 2,15xy+20x^2-30x=5x\left(3y+4x-6\right)\\ 3,6x-3xy=3x\left(2-y\right)\\ 4,x^3+2x^2+x=x\left(x^2+2x+1\right)=x\left(x+1\right)^2\\ 5,4x^3-12x^2+9x=x\left(4x^2-12x+9\right)=x\left(2x-3\right)^2\\ 6,2x^2y+4xy^2-10x^3y^2=2xy\left(x+2y-5x^2y\right)\\ 11,x\left(x-1\right)-y\left(1-x\right)=x\left(x-1\right)+y\left(x-1\right)=\left(x-1\right)\left(x+y\right)\)