4sin2x-2(\(\sqrt{3}\)+1)sĩn+\(\sqrt{3}\)=0
Giải phương trình: (2cosx-1)(3sin2x-6cos2x+2cosx+4-\(3\sqrt{2}\) )+4sin2x=3
a/ 1-sin9x+\(\sqrt{3}\)cos9x=0
b/ \(\sqrt{3}\)sin2x-2sin2x=\(\sqrt{2}\)-1
c/ sin5x+\(\sqrt{3}\)cos5x=2sin7x
d/ cos2x+sinx=\(\sqrt{3}\)(cosx-sin2x)
e/ sin2x+4sin2x+3cos2x+2=0
f/ 2sin2x+cos2x=7sinx-2cosx+4
\(\left(\sqrt{3}+2\right)sinx+cosx=4sin2x\cdot cosx\)
\(\Leftrightarrow\left(\sqrt{3}+2\right)sinx+cosx=2sin3x+2sinx\)
\(\Leftrightarrow\sqrt{3}sinx+cosx=2sin3x\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx=sin3x\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{6}\right)=sin3x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=x+\dfrac{\pi}{6}+k2\pi\\3x=\dfrac{5\pi}{6}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow x=...\)
Giải phương trình: \(\frac{cosx\left(cosx+2sinx\right)+3sinx\left(sĩn+\sqrt{2}\right)}{2sinx-1}\)= 1
Trầy trật giải 1 hồi mới thấy pt này bị sai :(
ĐKXĐ: \(sinx\ne\frac{1}{2}\)
\(\Leftrightarrow cos^2x+2sinx.cosx+3sin^2x+3\sqrt{2}sinx=2sinx-1\)
\(\Leftrightarrow\left(cosx+sinx\right)^2+2sin^2x+\left(3\sqrt{2}-2\right)sinx+1=0\)
\(\Leftrightarrow\left(sinx+cosx\right)^2+2\left(sinx-\frac{2-3\sqrt{2}}{4}\right)^2+\frac{6\sqrt{2}-7}{4}=0\)
Vế phải luôn dương nên pt vô nghiệm
Pt này chỉ có nghiệm khi mẫu số là \(sin2x-1\) :)
Tìm m để phương trình cos2x + 2(m+1)sĩn -2m-1=0 có đúng 3 nghiệm x ∈ 0 ; π
Tìm nghiệm thuộc (0;π/2) của pt: (1+sĩn+cosx+sin2x+cos2x)/(tanx+√3)=0
Trong khoảng đã cho \(tanx\) luôn dương nên ko cần tìm ĐKXĐ
\(\Leftrightarrow1+sinx+cosx+sin2x+cos2x=0\)
\(\Leftrightarrow sinx+cosx+2sinx.cosx+2cos^2x=0\)
\(\Leftrightarrow sinx+cosx+2cosx\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(2cosx+1\right)=0\)
Do \(0< x< \frac{\pi}{2}\Rightarrow\left\{{}\begin{matrix}sinx>0\\cosx>0\end{matrix}\right.\)
\(\Rightarrow\left(sinx+cosx\right)\left(2cosx+1\right)>0\)
Pt vô nghiệm trên \(\left(0;\frac{\pi}{2}\right)\)
Giải các phương trình, bất phương trình sau:
1) \(\sqrt{3x+7}-5< 0\)
2) \(\sqrt{-2x-1}-3>0\)
3) \(\dfrac{\sqrt{3x-2}}{6}-3=0\)
4) \(-5\sqrt{-x-2}-1< 0\)
5) \(-\dfrac{2}{3}\sqrt{-3-x}-3>0\)
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
1.\(\sqrt{-4x^2+25}=x\)
2.\(\sqrt{3x^2-4x+3}=1-2x\)
3. \(\sqrt{4\left(1-x\right)^2}-\sqrt{3}=0\)
4.\(\dfrac{3\sqrt{x+5}}{\sqrt{ }x-1}< 0\)
5. \(\dfrac{3\sqrt{x-5}}{\sqrt{x+1}}\ge0\)
1, Tìm GTLN M của hàm số y=a+b\(\sqrt{sinx}\) +c\(\sqrt{cosx}\); x\(\in\)(0;pi/4).a^2+b^2+c^2=4 2, giải pt sin3x-4sinx.cos2x=0
3,tập nghiệm của phương trình sin^2x cosx=0
4, giải pt \(\sqrt{3}\)sin2x+2sin^2x=3
5,pt 2sin^2x-5sinx.cosx-cos^2x=-2 tương đương với pt nào
6,nghiệm của pt sĩn+cosx-2sinx.cosx+1=0
7, tất cả các nghiệm của pt sin3x-cosx=0
8, số nghiệm của pt sin2x-cos2x=3sinx+cosx-2 trong khoảng(0;pi/2)
9, tìm m để pt 2sin^2x+msin2x=2m vô nghiệm
10, tổng các nghiệm của pt sin(x+pi/4)+sin(x-pi/4)=0 thuộc khoảng (0;4pi)
1.
Đề là \(x\in\left(0;\frac{\pi}{4}\right)\) hay \(x\in\left[0;\frac{\pi}{4}\right]\) ?
2.
\(sin3x-4sinx.cos2x=0\)
\(\Leftrightarrow sin3x-\left(2sin3x-2sinx\right)=0\)
\(\Leftrightarrow2sinx-sin3x=0\)
\(\Leftrightarrow2sinx-3sinx+4sin^3x=0\)
\(\Leftrightarrow sinx\left(4sin^2x-1\right)=0\)
\(\Leftrightarrow sinx\left(1-2cos2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos2x=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\frac{\pi}{6}+k\pi\end{matrix}\right.\)
3.
\(sin^2x.cosx=0\)
\(\Leftrightarrow sin2x=0\)
\(\Leftrightarrow x=\frac{k\pi}{2}\)
4.
\(\sqrt{3}sin2x+1-cos2x=3\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=1\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=1\)
\(\Leftrightarrow2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{3}+k\pi\)
5.
Ko có 4 đáp án thì làm sao biết, có vô số pt tương đương với pt này :)
6.
\(sinx+cosx-2sinx.cosx+1=0\)
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=t^2-1\end{matrix}\right.\)
Pt trở thành:
\(t+1-t^2+1=0\)
\(\Leftrightarrow-t^2+t+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2sinx.cosx=t^2-1=0\)
\(\Leftrightarrow sin2x=0\)
\(\Leftrightarrow x=\frac{k\pi}{2}\)