Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Trúc
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 4 2021 lúc 16:23

a. Bạn tự giải

b. Để pt có 2 nghiệm trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow m+1< 0\Rightarrow m< -1\)

c. Đề bài có vẻ ko chính xác, sửa lại ngoặc sau thành \(x_2\left(1-2x_1\right)...\)

 \(\Delta'=\left(m+2\right)^2-4\left(m+1\right)=m^2\ge0\) ; \(\forall m\)

\(\Rightarrow\) Pt đã cho luôn luôn có nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1\left(1-2x_2\right)+x_2\left(1-2x_1\right)=m^2\)

\(\Leftrightarrow x_1+x_2-4x_1x_2=m^2\)

\(\Leftrightarrow2\left(m+2\right)-4\left(m+1\right)=m^2\)

\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)

Thanh Trúc
Xem chi tiết
HT2k02
3 tháng 4 2021 lúc 13:38

a. Khi m=2 thì  (1) có dạng :

\(x^2-6\left(2-1\right)x+9\left(2-3\right)=0\\ \Leftrightarrow x^2-6x-9=0\\ \Leftrightarrow\left(x-3\right)^2=18\Leftrightarrow x-3=\pm\sqrt{18}\\ \Leftrightarrow x=3\pm3\sqrt{2}\)

Vậy với m=2 thì tập nghiệm của phương trình là \(S=\left\{3\pm3\sqrt{2}\right\}\)

 

b. Coi (1) là phương trình bậc 2 ẩn x , ta có:

\(\text{Δ}'=\left(-3m+3\right)^2-1\cdot9\left(m-3\right)=9m^2-18m+9-9m+27\\ =9m^2-27m+36=\left(3m-\dfrac{9}{2}\right)^2+\dfrac{63}{4}>0\)

Nên phương trình (1) luôn có 2 nghiệm x1,x2 thỏa mãn:

\(\left\{{}\begin{matrix}x_1+x_2=6\left(m-1\right)\\x_1x_2=9\left(m-3\right)\end{matrix}\right.\left(2\right)\)

 \(x_1+x_2=2x_1x_2\\ \Leftrightarrow6\left(m-1\right)=18\left(m-3\right)\Leftrightarrow m-1=3m-9\\ \Leftrightarrow2m=8\Leftrightarrow m=4\)

Vậy m=4

Nguyễn Lê Phước Thịnh
3 tháng 4 2021 lúc 21:01

b) Ta có: \(\text{Δ}=\left[-6\left(m-1\right)\right]^2-4\cdot1\cdot9\left(m-3\right)\)

\(=\left(6m-6\right)^2-36\left(m-3\right)\)

\(=36m^2-72m+36-36m+108\)

\(=36m^2-108m+144\)

\(=\left(6m\right)^2-2\cdot6m\cdot9+81+63\)

\(=\left(6m-9\right)^2+63>0\forall m\)

Suy ra: Phương trình luôn có hai nghiệm phân biệt với mọi m

Áp dụng hệ thức Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=6\left(m-1\right)=6m-6\\x_1\cdot x_2=9\left(m-3\right)=9m-27\end{matrix}\right.\)

Ta có: \(x_1+x_2=2x_1\cdot x_2\)

\(\Leftrightarrow6m-6=2\left(9m-27\right)\)

\(\Leftrightarrow6m-6-18m+54=0\)

\(\Leftrightarrow-12m+48=0\)

\(\Leftrightarrow-12m=-48\)

hay m=4

Vậy: m=4

Nguyễn Tấn Thịnh
Xem chi tiết
Nguyễn thành Đạt
25 tháng 7 2023 lúc 15:20

a) Điều kiện để phương trình có hai nghiệm trái dấu là :

\(\left\{{}\begin{matrix}m\ne0\\\Delta phẩy>0\\x_1.x_2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m^2+4m+4-m^2+3m>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\)

\(\Rightarrow0< m< 3\)

b) Để phương trình có 2 nghiệm phân biệt thì : \(\Delta\) phẩy  > 0

\(\Rightarrow m< 4\)

Ta có : \(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}=2\) 

\(\Leftrightarrow x_1^2+x_2^2=2x_1^2.x_2^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=2x_1^2.x_2^2\)

Theo Vi-ét ta có : \(x_1+x_2=\dfrac{-2\left(m-2\right)}{m};x_1.x_2=\dfrac{m-3}{m}\)

\(\Rightarrow\dfrac{4\left(m-2\right)^2}{m^2}-2.\dfrac{m-3}{m}=2.\dfrac{\left(m-3\right)^2}{m^2}\)

\(\Leftrightarrow m=1\left(tm\right)\)

Vậy...........

 

 

 

Nguyễn Đức Trí
25 tháng 7 2023 lúc 15:25

a) \(mx^2+2\left(m-2\right)x+m-3=0\left(1\right)\)

Để \(\left(1\right)\) có hai nghiệm trái dấu \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m-2\right)^2-m\left(m-3\right)>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4m+4-m^2-3m>0\\0< m< 3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7m+4>0\\0< m< 3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{4}{7}\\0< m< 3\end{matrix}\right.\) \(\Leftrightarrow0< m< 3\)

b) \(\dfrac{1}{x^2_1}+\dfrac{1}{x^2_2}=2\Leftrightarrow\dfrac{x^2_1+x_2^2}{x^2_1.x^2_2}=2\) \(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-4x_1.x_2}{x^2_1.x^2_2}=2\)

\(\Leftrightarrow\left(\dfrac{x_1+x_2}{x_1.x_2}\right)^2-\dfrac{4}{x_1.x_2}=2\)

\(\Leftrightarrow\left(\dfrac{\dfrac{2\left(2-m\right)}{m}}{\dfrac{m-3}{m}}\right)^2-\dfrac{4}{\dfrac{m-3}{m}}=2\)

\(\Leftrightarrow\left(\dfrac{2\left(2-m\right)}{m-3}\right)^2-\dfrac{4m}{m-3}=2\)

\(\Leftrightarrow4\left(2-m\right)^2-4m\left(m-3\right)=2.\left(m-3\right)^2\)

\(\Leftrightarrow4\left(4-4m+m^2\right)-4m^2+12=2.\left(m^2-6m+9\right)\)

\(\Leftrightarrow16-16m+4m^2-4m^2+12=2m^2-12m+18\)

\(\Leftrightarrow2m^2+4m-10=0\)

\(\Leftrightarrow m^2+2m-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1+\sqrt[]{6}\\m=-1-\sqrt[]{6}\end{matrix}\right.\) \(\Leftrightarrow m=-1+\sqrt[]{6}\left(\Delta>0\Rightarrow m>-\dfrac{4}{7}\right)\)

 

Triết Phan
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 3 2022 lúc 22:53

a: Khi m=-1 thì pt sẽ là \(x^2-\left(-1+2\right)x-\left(-1\right)-3=0\)

\(\Leftrightarrow x^2-x-2=0\)

=>x=2 hoặc x=-1

b: \(\Delta=\left(m+2\right)^2-4\left(-m-3\right)\)

\(=m^2+4m+4+4m+12\)

\(=m^2+8m+16=\left(m+4\right)^2\)

=>Phương trình luôn có hai nghiệm

Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2>1\)

\(\Leftrightarrow\left(m+2\right)^2-2\left(-m-3\right)>1\)

\(\Leftrightarrow m^2+4m+4+2m+6-1>0\)

\(\Leftrightarrow\left(m+3\right)^2>0\)

=>m<>-3

Pink Pig
Xem chi tiết
Nguyễn Ngọc Huy Toàn
29 tháng 5 2022 lúc 19:19

1.Thế `m=2` vào pt, ta được:

\(x^2-2\left(2-1\right)x+2-5=0\)

\(\Leftrightarrow x^2-2x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) ( Vi-ét )

2.

Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)

\(P=\left|x_1-x_2\right|\)

\(\Leftrightarrow P^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(\Leftrightarrow P^2=\left[2\left(m-1\right)\right]^2-4\left(m-5\right)\)

\(\Leftrightarrow P^2=4\left(m-1\right)^2-4\left(m-5\right)\)

\(\Leftrightarrow P^2=4m^2-8m+4-4m+20\)

\(\Leftrightarrow P^2=4m^2-12m+24\)

\(\Leftrightarrow P^2=\left(2m-3\right)^2+15\)

\(P^2\ge15\)

mà \(P\ge0\)

\(\Rightarrow Min_P=\sqrt{15}\)

Dấu "=" xảy ra khi \(2m-3=0\) \(\Leftrightarrow m=\dfrac{3}{2}\)

Vậy \(Min_P=\sqrt{15}\) khi \(m=\dfrac{3}{2}\)

 

Rin Huỳnh
29 tháng 5 2022 lúc 19:20

\(x^2-2(m-1)x+m-5=0\ \ (1) \\1)Thay\ m=2\ vào\ (1)\ ta\ có: \\x^2-2(2-1)x+2-5=0 \\<=>x^2-2x-3=0<=>(x+1)(x-3)=0<=>x=-1\ hoặc\ x=3 \\2)\triangle'=[-(m-1)]^2-1.(m-5)=m^2-3m+6>0\ với\ mọi\ m \\->Phương\ trình\ (1)\ luôn\ có\ 2\ nghiệm\ phân\ biệt\ với\ mọi\ m. \\Theo\ hệ\ thức\ Vi-ét\ ta\ có: \\x_1+x_2=2(m-1);x_1x_2=m-5 \)

\(Ta\ có: P^2=x_1^2-2x_1x_2+x_2^2=(x_1+x_2)^2-4x_1x_2 \\=[2(m-1)]^2-4(m-5)=4(m-\dfrac{3}{2})^2+15\ge15 \\->P\ge\sqrt{15} \\Đẳng\ thức\ xảy\ ra\ khi\ m=\dfrac{3}{2}. \\Vậy\ P\ nhỏ\ nhất\ bằng\ \sqrt{15}\ (khi\ m=\dfrac{3}{2}).\)

Kim Taehyungie
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 3 2022 lúc 21:02

a: Thay m=-5 vào (1), ta được:

\(x^2+2\left(-5+1\right)x-5-4=0\)

\(\Leftrightarrow x^2-8x-9=0\)

=>(x-9)(x+1)=0

=>x=9 hoặc x=-1

b: \(\text{Δ}=\left(2m+2\right)^2-4\left(m-4\right)=4m^2+8m+4-4m+16=4m^2+4m+20>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt 

\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=-3\)

\(\Leftrightarrow x_1^2+x_2^2=-3x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=0\)

\(\Leftrightarrow\left(2m+2\right)^2+m-4=0\)

\(\Leftrightarrow4m^2+9m=0\)

=>m(4m+9)=0

=>m=0 hoặc m=-9/4

Zenitisu
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 5 2021 lúc 21:42

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0\) ; \(\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m-3\end{matrix}\right.\)

Ta có: \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\ge0\)

\(\Rightarrow P_{min}=0\) khi \(x_1+x_2=0\Leftrightarrow m=-1\)

Đề là yêu cầu tìm max hay min nhỉ? Min thế này thì có vẻ là quá dễ

Xem chi tiết

a: \(\text{Δ}=\left[-\left(m+3\right)\right]^2-4\cdot2\cdot m\)

\(=\left(m+3\right)^2-8m\)

\(=m^2-2m+9=\left(m-1\right)^2+8>0\forall m\)

=>Phương trình (1) luôn có hai nghiệm phân biệt

b: Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{m+3}{2}\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m}{2}\end{matrix}\right.\)

\(A=\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}\)

\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{\dfrac{1}{4}\left(m+3\right)^2-4\cdot\dfrac{m}{2}}\)

\(=\sqrt{\dfrac{1}{4}\left(m^2+6m+9\right)-2m}\)

\(=\sqrt{\dfrac{1}{4}m^2+\dfrac{3}{2}m+\dfrac{9}{4}-2m}\)

\(=\sqrt{\dfrac{1}{4}m^2-\dfrac{1}{2}m+\dfrac{9}{4}}\)

\(=\sqrt{\dfrac{1}{4}\left(m^2-2m+9\right)}\)

\(=\sqrt{\dfrac{1}{4}\left(m^2-2m+1+8\right)}\)

\(=\sqrt{\dfrac{1}{4}\left(m-1\right)^2+2}>=\sqrt{2}\)

Dấu '=' xảy ra khi m-1=0

=>m=1

Nguyễn Phương Thảo
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 3 2021 lúc 22:03

\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)

a. \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1=3x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x_2=2\left(m+1\right)\\x_1=3x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{2}\\x_1=\dfrac{3\left(m+1\right)}{2}\end{matrix}\right.\)

Lại có \(x_1x_2=2m+10\Rightarrow\left(\dfrac{m+1}{2}\right)\left(\dfrac{3\left(m+1\right)}{2}\right)=2m+10\)

\(\Leftrightarrow3m^2+6m+3=8m+40\)

\(\Leftrightarrow3m^2-2m-37=0\Rightarrow m=\dfrac{1\pm4\sqrt{7}}{3}\)

b.

\(P=-\left(x_1+x_2\right)^2-8x_1x_2\)

\(=-4\left(m+1\right)^2-8\left(2m+10\right)\)

\(=-4m^2-24m-84=-4\left(m+3\right)^2-48\le-48\)

\(P_{max}=-48\) khi \(m=-3\)

Nguyễn Lê Phước Thịnh
18 tháng 3 2021 lúc 22:10

a) Ta có: \(\Delta=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+10\right)\)

\(=\left(2m+2\right)^2-4\left(2m+10\right)\)

\(=4m^2+8m+4-8m-40\)

\(=4m^2-36\)

Để phương trình có nghiệm thì \(4m^2-36\ge0\)

\(\Leftrightarrow4m^2\ge36\)

\(\Leftrightarrow m^2\ge9\)

\(\Leftrightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)

Khi \(m\ge3\) hoặc \(m\le-3\) thì Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1\cdot x_2=2m+10\\x_1+x_2=2\left(m+1\right)=2m+2\end{matrix}\right.\)

mà \(x_1-3x_2=0\) nên ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_2=2m+2\\x_1=3x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=3\cdot x_2\\x_2=\dfrac{m+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{3m+3}{2}\\x_2=\dfrac{m+1}{2}\end{matrix}\right.\)

Thay \(x_1=\dfrac{3m+3}{2};x_2=\dfrac{m+1}{2}\) vào \(x_1\cdot x_2=2m+10\), ta được:

\(\dfrac{3m+3}{2}\cdot\dfrac{m+1}{2}=2m+10\)

\(\Leftrightarrow\dfrac{3\left(m+1\right)^2}{4}=2m+10\)

\(\Leftrightarrow3\left(m^2+2m+1\right)=8m+40\)

\(\Leftrightarrow3m^2+6m+3-8m-40=0\)

\(\Leftrightarrow3m^2-2m-37=0\)

\(\Delta=\left(-2\right)^2-4\cdot3\cdot\left(-37\right)=4+444=448>0\)

Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{2+8\sqrt{7}}{6}=\dfrac{4\sqrt{7}+1}{3}\left(nhận\right)\\m_2=\dfrac{2-8\sqrt{7}}{6}=\dfrac{1-4\sqrt{7}}{3}\left(nhận\right)\end{matrix}\right.\)

Lê Hoàng Anh
Xem chi tiết
Tô Mì
1 tháng 6 2023 lúc 10:17

Phương trình có : \(\Delta=b^2-4ac=\left[-\left(m+1\right)\right]^2-4.1.\left(-2\right)\)

\(\Rightarrow\Delta=\left(m+1\right)^2+8>0\)

Suy ra phương trình có hai nghiệm phân biệt với mọi \(m\).

Theo định lí Vi-ét : \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=-2\end{matrix}\right.\)

Theo đề bài : \(\left(1-\dfrac{2}{x_1+1}\right)^2+\left(1-\dfrac{2}{x_2+1}\right)^2=2\)

\(\Leftrightarrow\dfrac{\left(x_1-1\right)^2}{\left(x_1+1\right)^2}+\dfrac{\left(x_2-1\right)^2}{\left(x_2+1\right)^2}=2\)

\(\Leftrightarrow\dfrac{\left[\left(x_1-1\right)\left(x_2+1\right)\right]^2+\left[\left(x_2-1\right)\left(x_1+1\right)\right]^2}{\left[\left(x_1+1\right)\left(x_2+1\right)\right]^2}=2\)

\(\Leftrightarrow\left[\left(x_1-1\right)\left(x_2+1\right)\right]^2+\left[\left(x_2-1\right)\left(x_1+1\right)\right]^2-2\left[\left(x_1+1\right)\left(x_2+1\right)\right]^2=0\)

\(\Leftrightarrow\left(x_2+1\right)^2\left[\left(x_1-1\right)^2-\left(x_1+1\right)^2\right]+\left(x_1+1\right)^2\left[\left(x_2-1\right)^2-\left(x_2+1\right)^2\right]=0\)

\(\Leftrightarrow-4x_1\left(x_2+1\right)^2-4x_2\left(x_1+1\right)^2=0\)

\(\Leftrightarrow x_1x_2^2+2x_1x_2+x_1+x_1^2x_2+2x_1x_2+x_2=0\)

\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)+4x_1x_2+\left(x_1+x_2\right)=0\)

\(\Rightarrow-2\left(m+1\right)+4\cdot\left(-2\right)+m+1=0\)

\(\Leftrightarrow m=-9\)

Vậy : \(m=-9.\)