Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

cho phương trình : \(2x^2-\left(m+3\right)x+m=0\) (1)

a, chứng tỏ phương trình (1) có nghiệm với mọi giá trị của m

b, gọi \(x_1,x_2\) là các nghiệm của phương trình (1).Tìm giá trị nhỏ nhất của biểu thức sau A= trị tuyệt đối của \(x_1-x_2\)

a: \(\text{Δ}=\left[-\left(m+3\right)\right]^2-4\cdot2\cdot m\)

\(=\left(m+3\right)^2-8m\)

\(=m^2-2m+9=\left(m-1\right)^2+8>0\forall m\)

=>Phương trình (1) luôn có hai nghiệm phân biệt

b: Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{m+3}{2}\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m}{2}\end{matrix}\right.\)

\(A=\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}\)

\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{\dfrac{1}{4}\left(m+3\right)^2-4\cdot\dfrac{m}{2}}\)

\(=\sqrt{\dfrac{1}{4}\left(m^2+6m+9\right)-2m}\)

\(=\sqrt{\dfrac{1}{4}m^2+\dfrac{3}{2}m+\dfrac{9}{4}-2m}\)

\(=\sqrt{\dfrac{1}{4}m^2-\dfrac{1}{2}m+\dfrac{9}{4}}\)

\(=\sqrt{\dfrac{1}{4}\left(m^2-2m+9\right)}\)

\(=\sqrt{\dfrac{1}{4}\left(m^2-2m+1+8\right)}\)

\(=\sqrt{\dfrac{1}{4}\left(m-1\right)^2+2}>=\sqrt{2}\)

Dấu '=' xảy ra khi m-1=0

=>m=1


Các câu hỏi tương tự
Ngọc Mai
Xem chi tiết
Bùi Vương TP (Hacker Nin...
Xem chi tiết
Trần Quang Chiến
Xem chi tiết
Le Minh Hieu
Xem chi tiết
....
Xem chi tiết
dung anh
Xem chi tiết
....
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
ta nguyễn
Xem chi tiết