Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
....

a) gọi \(x_1,x_2\) là nghiệm của phương trình: \(x^2-2\left(m+1\right)x+4m-m^2=0\).Tìm giá trị nhỏ nhất của P=\(\left|x_1-x_2\right|\) 

Akai Haruma
26 tháng 8 2021 lúc 11:56

Lời giải:
$\Delta'=(m+1)^2-(4m-m^2)=2m^2-2m+1=2(m-0,5)^2+0,5>0$ với mọi $m$ nên pt luôn có 2 nghiệm pb với mọi $m$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=4m-m^2\end{matrix}\right.\)

Khi đó:
\(P=|x_1-x_2|=\sqrt{(x_1-x_2)^2}=\sqrt{(x_1+x_2)^2-4x_1x_2}\)

\(=\sqrt{4(m+1)^2-4(4m-m^2)}=\sqrt{4(2m^2-2m+1)}\)

\(=2\sqrt{2(m-0,5)^2+0,5}\geq 2\sqrt{0,5}\)

Vậy $P_{\min}=2\sqrt{0,5}=\sqrt{2}$. Giá trị này đạt tại $m=0,5$

santa
26 tháng 8 2021 lúc 11:56

Theo Vi-et : \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1.x_2=4m-m^2\end{matrix}\right.\)

\(\Rightarrow\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1.x_2\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=\left(2m+2\right)^2-4.\left(4m-m^2\right)=4m^2+8m+4-16m+4m^2\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=8m^2-8m+4=8\left(m^2+m+\dfrac{1}{4}\right)+2=8\left(m+\dfrac{1}{2}\right)^2+2\ge2\)

\(\Leftrightarrow\left|x_1-x_2\right|\ge\sqrt{2}\)

 


Các câu hỏi tương tự
Nguyễn Minh Anh
Xem chi tiết
Ngọc Mai
Xem chi tiết
Xem chi tiết
Nguyễn Ngọc Lan Thy
Xem chi tiết
Le Minh Hieu
Xem chi tiết
Trần Quang Chiến
Xem chi tiết
dung anh
Xem chi tiết
Đĩ Nguyễn Con
Xem chi tiết
Ngọc Mai
Xem chi tiết