Để pt có 2 nghiệm pb khác 0:
\(\left\{{}\begin{matrix}\Delta'=4\left(m-1\right)^2-3\left(m^2-4m+1\right)>0\\x_1x_2=\dfrac{m^2-4m+1}{3}\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+4m+1>0\\m^2-4m+1\ne0\end{matrix}\right.\) (1)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{4\left(m-1\right)}{3}\\x_1x_2=\dfrac{m^2-4m+1}{3}\end{matrix}\right.\)
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\left(x_1+x_2\right)\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{1}{2}\left(x_1+x_2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1+x_2=0\\x_1x_2=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{4\left(m-1\right)}{3}=0\\\dfrac{m^2-4m+1}{3}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-1\\m=5\end{matrix}\right.\)
Thế vào hệ điều kiện (1) kiểm tra chỉ có \(\left[{}\begin{matrix}m=1\\m=5\end{matrix}\right.\) thỏa mãn