Tìm m để phương trình: \(3x^2+4\left(m-1\right)x+m^2-4m+1=0\) có hai nghiệm phân biệt \(x_1,x_2\) thỏa mãn: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\left(x_1+x_2\right)\)
b Tìm m để phương trình \(\left(m-1\right)x^2+2\left(m-1\right)x+m+3=0\) có hai nghiệm x1,x2 thỏa mãn \(x_1^2+x_1.x_2+x_2^2=1\)
c Tìm m để phương trình \(\left(m-1\right)x^2-2mx+m+2=0\) có hai nghiệm x1,x2 phân biệt thỏa mãn \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+6=0\)
d Tìm m để phương trình \(3x^2+4\left(m-1\right)x+m^2-4m+1=0\) có hai nghiệm phân biệt x1,x2 thỏa mãn \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\) (x1+x2)
Cho \(x^2-\left(m+1\right)x-4=0\)
Tìm m để phương trình có 2 nghiệm phân biệt thỏa mãn: \(x_2-x_1=5\left|x_1\right|\)
Câu 1: Cho phương trình \(x^2-2\left(m+4\right)x+m^2+8m-9=0\)
(Với m là tham số)
a)Tìm các giá trị nguyên của m để phương trình trên có hai nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(\dfrac{x_1^2+x_2^2-48}{x_1^2+x^2_2}\) nguyên.
Cho phương trình ẩn x : \(^{x^2-5x+m-2=0\left(1\right)}\)
a.Giải phương trình (1) khi m=-4
b.Tìm m để phương trình (1) có hai nghiệm dương phân biệt \(_{x_1,_{ }x_2}\)thỏa mãn hệ thức \(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)=3\)
Cho phương trình \(x^2-2\left(m+1\right)x+m^2-3=0\)
Tìm m sao cho phương trình đã cho có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn hệ thức \(x_1^2+x_2^2+3x_1x_2=14\)
Cho phương trình: \(x^2\) - 2 ( m -1 ) x - m -3 = 0 (1)
a) Giải phương trình với m = -3
b) Tìm m để phương trình (1) có hai nghiệm phân biệt x1 và x2 thỏa mãn: \(\left(x_1-x_2\right)^2\) = 4\(m^2\) - 5 x1 + x2
Cho phương trình: \(x^2-\left(2m-3\right)x+m^2-3m=0\)
a) CMR phương trình luôn có hai nghiệm phân biệt với mọi m
b) Xác định m để phương trình có hai nghiệm \(x_1,x_2\) thoả mãn \(1< x_1< x_2< 6\)