Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Minh Anh

Cho phương trình \(x^2-2\left(m+1\right)x+m^2-3=0\)

Tìm m sao cho phương trình đã cho có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn hệ thức \(x_1^2+x_2^2+3x_1x_2=14\)

✎﹏ϯǜทɠ✯廴ěë︵☆
25 tháng 3 2022 lúc 21:31

theo dõi em ik idol

Nguyễn Việt Lâm
25 tháng 3 2022 lúc 21:36

\(\Delta'=\left(m+1\right)^2-\left(m^2-3\right)=2m+4>0\Rightarrow m>-2\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2-3\end{matrix}\right.\)

\(x_1^2+x_2^2+3x_1x_2=14\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=14\)

\(\Leftrightarrow4\left(m+1\right)^2+m^2-3=14\)

\(\Leftrightarrow5m^2+8m-13=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-\dfrac{13}{5}< -2\left(loại\right)\end{matrix}\right.\)

Nguyễn Hà Thành Đạt
25 tháng 3 2022 lúc 22:33

Để pt có 2 nghiệm phân biệt thì Δ'>0

Δ'= [-(m+1)]2-1*(m2-3)>0

= m2+2m+1-m2+3>0

= 2m+4 >0

↔ 2m>-4

↔ m>-2

áp dụng hệ thức vi-ét ta có :

[x1+x2=2(m+1)=2m+2

[x1x2=m2-3

   ta lại có:    x12+x22+3x1x2 =14

<=> (x1+x2)2+x1x2=14

<=> (2m+2)2 +(m2-3)=14

<=> 4m2+8m+4+m2-3-14=0

<=> 5m2+8m-17=0

Δ'=42-5(-17)

=101

 


Các câu hỏi tương tự
Lê Duy Thanh
Xem chi tiết
Đặng Việt Hùng
Xem chi tiết
....
Xem chi tiết
Hạ Mặc Tịch
Xem chi tiết
TheUnknown234
Xem chi tiết
꧁Gιʏuu ~ Cнᴀɴ꧂
Xem chi tiết
....
Xem chi tiết
Nguyễn Minh Quân
Xem chi tiết
Hà Quang Thắng
Xem chi tiết