\(\Delta'=\left(m+1\right)^2-\left(m^2-3\right)=2m+4>0\Rightarrow m>-2\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2-3\end{matrix}\right.\)
\(x_1^2+x_2^2+3x_1x_2=14\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=14\)
\(\Leftrightarrow4\left(m+1\right)^2+m^2-3=14\)
\(\Leftrightarrow5m^2+8m-13=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-\dfrac{13}{5}< -2\left(loại\right)\end{matrix}\right.\)
Để pt có 2 nghiệm phân biệt thì Δ'>0
Δ'= [-(m+1)]2-1*(m2-3)>0
= m2+2m+1-m2+3>0
= 2m+4 >0
↔ 2m>-4
↔ m>-2
áp dụng hệ thức vi-ét ta có :
[x1+x2=2(m+1)=2m+2
[x1x2=m2-3
ta lại có: x12+x22+3x1x2 =14
<=> (x1+x2)2+x1x2=14
<=> (2m+2)2 +(m2-3)=14
<=> 4m2+8m+4+m2-3-14=0
<=> 5m2+8m-17=0
Δ'=42-5(-17)
=101