a: Để phương trình có hai nghiệm trái dấu thì \(\left(m^2-m-6\right)\cdot1< 0\)
\(\Leftrightarrow\left(m-3\right)\left(m+2\right)< 0\)
\(\Leftrightarrow-2< m< 3\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a: Để phương trình có hai nghiệm trái dấu thì \(\left(m^2-m-6\right)\cdot1< 0\)
\(\Leftrightarrow\left(m-3\right)\left(m+2\right)< 0\)
\(\Leftrightarrow-2< m< 3\)
Cho phương trình: \(x^2-\left(2m-3\right)x+m^2-3m=0\)
a) CMR phương trình luôn có hai nghiệm phân biệt với mọi m
b) Xác định m để phương trình có hai nghiệm \(x_1,x_2\) thoả mãn \(1< x_1< x_2< 6\)
Cho phương trình \(x^2-2\left(m-1\right)x+4m+4=0\) Tìm m để phương trình có hai nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(x_1+x_2^2=5\)
Cho phương trình \(x^2-2\left(m+1\right)x+m^2-3=0\)
Tìm m sao cho phương trình đã cho có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn hệ thức \(x_1^2+x_2^2+3x_1x_2=14\)
b Tìm m để phương trình \(\left(m-1\right)x^2+2\left(m-1\right)x+m+3=0\) có hai nghiệm x1,x2 thỏa mãn \(x_1^2+x_1.x_2+x_2^2=1\)
c Tìm m để phương trình \(\left(m-1\right)x^2-2mx+m+2=0\) có hai nghiệm x1,x2 phân biệt thỏa mãn \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+6=0\)
d Tìm m để phương trình \(3x^2+4\left(m-1\right)x+m^2-4m+1=0\) có hai nghiệm phân biệt x1,x2 thỏa mãn \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\) (x1+x2)
Cho phương trình ẩn x : \(^{x^2-5x+m-2=0\left(1\right)}\)
a.Giải phương trình (1) khi m=-4
b.Tìm m để phương trình (1) có hai nghiệm dương phân biệt \(_{x_1,_{ }x_2}\)thỏa mãn hệ thức \(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)=3\)
Cho phương trình: \(x^2\) - 2 ( m -1 ) x - m -3 = 0 (1)
a) Giải phương trình với m = -3
b) Tìm m để phương trình (1) có hai nghiệm phân biệt x1 và x2 thỏa mãn: \(\left(x_1-x_2\right)^2\) = 4\(m^2\) - 5 x1 + x2
Cho phương trình: \(x^2\)– 5x + m = 0 (m là tham số).
a) Giải phương trình trên khi m = 6.
b) Tìm m để phương trình trên có hai nghiệm \(x_1,x_2\)thỏa mãn :\(\left|x_1-x_2\right|=3\)
Cho phương trình x2-11x+m-2=0
Tìm các giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1;x2 thỏa mãn \(\sqrt{x_1^2-10x_1+m-1}\)=5-\(\sqrt{x_2+1}\)