Rút gọn biểu thức :
a) \(\log_36.\log_89.\log_62\)
b) \(\log_ab^2+\log_{a^2}b^4\)
Rút gọn biểu thức sau :
\(A=\left(\log_ab+\log_ba+2\right)\left(\log_ab-\log_{ab}b\right)\log_ba-1\)
\(B=\left(\log b_a+\log_ba+2\right)\left(\log b_a-\log b_{ab}\right)-1=\left(\log b_a+\frac{1}{\log b_a}+2\right)\left(\log b_a.\log_ba-\left(\log_{ab}b.\log_ba\right)\right)-1\)
\(=\frac{\log^2_ab+2\log_ab+1}{\log_ab}\left(1-\log_{ab}a\right)-1=\frac{\left(\log_ab+1\right)^2}{\log_ab}\left(1-\frac{1}{\log_aab}\right)-1\)
\(=\frac{\left(\log_ab+1\right)^2}{\log_ab}\left(1-\frac{1}{1+\log_ab}\right)-1=\frac{\left(\log_ab+1\right)^2}{\log_ab}.\frac{\log_ab}{1+\log_ab}-1=\log_ab+1-1=\log_ab\)
Rút gọn biểu thức sau :
\(A=\left(\log_ab+\log_ba+2\right)\left(\log_ab-\log_{ab}b\right)\log_ba-1\)
\(=\left(\log_ab+\log_ba+2\right)\left(1-\log_{ab}a\right)-1\)
\(=\left(\log_ab+\log_ba+2\right)\left(1-\frac{1}{1+\log_ab}\right)-1\)
\(=\frac{1}{1+\log_ab}\left(\log_ab+\log_ba+2\right)-1\)
\(=\frac{1}{1+\log_ab}\left[\left(\log_ab+\log_ba+2\right)-1-\log_ab\right]\)
\(=\frac{1}{1+\log_ab}\left(\log_ab+\log^2_ba\right)=\log_ab\)
Rút gọn các biểu thức sau :
\(A=\left(\log^3_ba+2\log^2_ba+\log_ba\right)\left(\log_ab-\log_{ab}b\right)-\log_ba\)
Ta có \(A=\left(\log^3_ba+2\log^2_ba+\log_ba\right)\left(\log_ab-\log_{ab}b\right)-\log_ba\)
\(=\left(\log_ba+1\right)^2\left(1-\frac{1}{\log_aab}\right)-\log_ba\)
\(=\left(\log_ba+1\right)^2\left(1-\frac{1}{1+\log_ab}\right)-\log_ba\)
\(=\left(\log_ba+1\right)^2\left(1-\frac{\log_ba}{\log_ba+1}\right)-\log_ba\)
\(=\log_ba+1-\log_ba=1\)
rút gọn các biểu thức
a) \(log_{a^4}b^4.log_ba^5\)
b) \(log_{a^3}b^2.log_ba^4\)
c) \(log_{a^{15}}b^7.log_{b^{49}}a^{30}\)
d) \(log_{a^{2021}}b^{2020}.log_{b^{4040}}a^{6063}\)
\(log_{a^4}b^4.log_ba^5=\dfrac{1}{4}.4.log_ab.5.log_ba=5.log_ab.log_ba=5\)
\(log_{a^3}b^2.log_ba^4=\dfrac{1}{3}.2.log_ab.4.log_ba=\dfrac{8}{3}.log_ab.log_ba=\dfrac{8}{3}\)
\(log_{a^{15}}b^7.log_{b^{49}}a^{30}=\dfrac{1}{15}.7.log_ab.\dfrac{1}{49}.30.log_ba=\dfrac{2}{7}log_ab.log_ba=\dfrac{2}{7}\)
\(log_{a^{2021}}b^{2020}.log_{b^{4040}}a^{6063}=\dfrac{1}{2021}.2020.log_ab.\dfrac{1}{4040}.6063.log_ba=\dfrac{3}{2}\)
Chứng minh rằng :
a) \(\log_{a_1}a_2.\log_{a_2}a_3.\log_{a_3}a_4.....\log_{a_{n-1}}a_n=\log_{a_1}a_n\)
b) \(\dfrac{1}{\log_ab}+\dfrac{1}{\log_{a^2}b}+\dfrac{1}{\log_{a^3}b}+.....+\dfrac{1}{\log_{a^nb}}=\dfrac{n\left(n+1\right)}{2\log_ab}\)
a) Áp dụng công thức: \(\log_ab.\log_bc=\log_ac\)
b) Vì \(\dfrac{1}{\log_{a^k}b}=\dfrac{1}{\dfrac{1}{k}\log_ab}=\dfrac{k}{\log_ab}\) nên biểu thức vế trái bằng:
\(VT=\dfrac{1}{\log_ab}\left(1+2+...+n\right)\)
\(=\dfrac{1}{\log_ab}.\dfrac{n\left(n+1\right)}{2}=VP\)
Xác định dấu của biểu thức :
\(A=\left(\frac{1}{6}\right)^{\log_62-\frac{1}{2}\log_{\sqrt{6}}5}-\sqrt[3]{\frac{31}{2}}\)
Ta có :
\(\log_62-\frac{1}{2}\log_{\sqrt{6}}5=\log_62-\log_65=\log_6\frac{2}{5}\)
\(\Rightarrow\left(\frac{1}{6}\right)^{\log_62-\frac{1}{2}\log_{\sqrt{6}}5}=\left(\frac{1}{6}\right)^{\log_6\frac{2}{5}}=\left(6^{-1}\right)^{\log_6\frac{2}{5}}=6^{\log_6\frac{2}{5}}=\frac{5}{2}=\sqrt[3]{\left(\frac{5}{2}\right)^3}=\sqrt[3]{\frac{125}{8}}\)
Mà :
\(\sqrt[3]{\frac{125}{8}}>\sqrt[3]{\frac{124}{8}}\Rightarrow\left(\frac{1}{6}\right)^{\log_62-\frac{1}{2}\log_{\sqrt{6}}5}>\sqrt[3]{\frac{31}{2}}\)
\(\Rightarrow B=\left(\frac{1}{6}\right)^{\log_62-\frac{1}{2}\log_{\sqrt{6}}5}-\sqrt[3]{\frac{31}{2}}>0^{ }\)
rút gọn các biểu thức
a) \(log_{a^3}b.log_ba\)
b) \(log_{a^{10}}b^5.log_{b^3}a^9\)
c) \(log_{a^{107}}b^{101}.log_{b^{303}}a^{428}\)
\(log_{a^3}b.log_ba=\dfrac{1}{3}.log_ab.log_ba=\dfrac{1}{3}\)
\(log_{a^{10}}b^5.log_{b^3}a^9=\dfrac{1}{10}.5.log_ab.\dfrac{1}{3}.9.log_ba=\dfrac{3}{2}\)
\(log_{a^{107}}b^{101}.log_{b^{303}}a^{428}=\dfrac{1}{107}.101.log_ab.\dfrac{1}{303}.428.log_ba=\dfrac{4}{3}.log_ab.log_ba=\dfrac{4}{3}\)
a: \(log_{a^3}b\cdot log_ba=\dfrac{1}{3}\cdot log_ab\cdot log_ba=\dfrac{1}{3}\)
b: \(log_{a^{10}}b^5\cdot log_{b^3}a^9\)
\(=\dfrac{1}{10}\cdot log_ab^5\cdot\dfrac{1}{3}\cdot log_ba^9\)
\(=\dfrac{1}{30}\cdot5\cdot log_ab\cdot9\cdot log_ba=\dfrac{45}{30}=\dfrac{3}{2}\)
c: \(log_{a^{107}}b^{101}\cdot log_{b^{303}}a^{428}\)
\(=\dfrac{1}{107}\cdot log_ab^{101}\cdot\dfrac{1}{303}\cdot log_ba^{428}\)
\(=\dfrac{1}{107}\cdot101\cdot log_ab\cdot\dfrac{1}{303}\cdot428\cdot log_ba\)
\(=4\cdot\dfrac{1}{3}=\dfrac{4}{3}\)
Cho a,b là các số thực dương >1 thỏa mãn \(\log_ab=3\). Tính \(P=\log_{a^2b}a^3-3\log_{a^2}2.\log_4\left(\dfrac{a}{b}\right)\)
\(P=3log_{a^2b}a-\dfrac{3}{4}log_a2.log_2\left(\dfrac{a}{b}\right)\)
\(=\dfrac{3}{log_a\left(a^2b\right)}-\dfrac{3}{4.log_2a}.\left(log_2a-log_2b\right)\)
\(=\dfrac{3}{log_aa^2+log_ab}-\dfrac{3}{4.log_2a}.log_2a+\dfrac{3}{4}.\dfrac{log_2b}{log_2a}\)
\(=\dfrac{3}{2+3}-\dfrac{3}{4}+\dfrac{3}{4}.log_ab=\dfrac{3}{5}-\dfrac{3}{4}+\dfrac{9}{4}=\dfrac{21}{10}\)
Rút gọn biểu thức sau :
\(A=\frac{1}{\log_ax}+\frac{1}{\log_{a^2}x}+\frac{1}{\log_{a^3}x}+.......+\frac{1}{\log_{a^n}x}\)
Theo công thức biến đổi có số ta có : \(\log_{a^n}x=\frac{\log_ax}{\log_aa^n}=\frac{1}{n}\log_ax\)
Từ đó ta có :
\(A=\frac{1}{\log_ax}+\frac{1}{\log_{a^2}x}+\frac{1}{\log_{a^3}x}+...+\frac{1}{\log_{a^n}x}\)
\(=\frac{1}{\log_ax}+\frac{2}{\log_ax}+\frac{4}{\log_ax}+...+\frac{n}{\log_ax}\)
\(=\frac{1+2+3+...+n}{\log_ax}=\frac{n\left(n+1\right)}{\log_ax}\)
Vậy \(A=\frac{1}{\log_ax}+\frac{1}{\log_{a^2}x}+\frac{1}{\log_{a^3}x}+...+\frac{1}{\log_{a^n}x}=\frac{n\left(n+1\right)}{\log_ax}\)