Chương 2: HÀM SỐ LŨY THỪA. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Văn Quốc Huy

Rút gọn biểu thức sau :

\(A=\frac{1}{\log_ax}+\frac{1}{\log_{a^2}x}+\frac{1}{\log_{a^3}x}+.......+\frac{1}{\log_{a^n}x}\)

Guyo
4 tháng 5 2016 lúc 10:36

Theo công thức biến đổi có số ta có : \(\log_{a^n}x=\frac{\log_ax}{\log_aa^n}=\frac{1}{n}\log_ax\)

Từ đó ta có :

      \(A=\frac{1}{\log_ax}+\frac{1}{\log_{a^2}x}+\frac{1}{\log_{a^3}x}+...+\frac{1}{\log_{a^n}x}\)

          \(=\frac{1}{\log_ax}+\frac{2}{\log_ax}+\frac{4}{\log_ax}+...+\frac{n}{\log_ax}\)

          \(=\frac{1+2+3+...+n}{\log_ax}=\frac{n\left(n+1\right)}{\log_ax}\)

Vậy \(A=\frac{1}{\log_ax}+\frac{1}{\log_{a^2}x}+\frac{1}{\log_{a^3}x}+...+\frac{1}{\log_{a^n}x}=\frac{n\left(n+1\right)}{\log_ax}\)


Các câu hỏi tương tự
Minh Anh
Xem chi tiết
Nguyễn Thái Quân
Xem chi tiết
lưu lan viên
Xem chi tiết
Phạm Trần Phát
Xem chi tiết
Trần Đào Tuấn
Xem chi tiết
Nguyễn Hoàng Minh Đức
Xem chi tiết
shayuri.shayuri.shayuri
Xem chi tiết
Võ Thị Thùy Dung
Xem chi tiết
Hoàng Huệ Cẩm
Xem chi tiết