Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 3 2017 lúc 16:19

Ta có:

Đề kiểm tra 45 phút Hình học 11 Chương 2 có đáp án (Đề 1)

Đề kiểm tra 45 phút Hình học 11 Chương 2 có đáp án (Đề 1)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 7 2018 lúc 18:17

Ta có: 

Đề kiểm tra 45 phút Hình học 11 Chương 2 có đáp án (Đề 1)

Đề kiểm tra 45 phút Hình học 11 Chương 2 có đáp án (Đề 1)

27.Trúc Quyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 12 2023 lúc 4:40

a: Gọi O là giao điểm của AC và BD

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Gọi K là giao điểm của AB và CD

\(K\in AB\subset\left(SAB\right)\)

\(K\in CD\subset\left(SCD\right)\)

Do đó: \(K\in\left(SAB\right)\cap\left(SCD\right)\)

mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)

nên \(\left(SAB\right)\cap\left(SCD\right)=SK\)

b: Xét (SAD) và (SBC) có

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC

c: Chọn mp(SCD) có chứa CD

\(N\in SC\subset\left(SCD\right)\)

\(P\in SD\subset\left(SCD\right)\)

Do đó: \(NP\subset\left(SCD\right)\)

mà \(NP\subset\left(MNP\right)\)

nên (SCD) giao (MNP)=NP

Gọi E là giao điểm của CD với NP

=>E là giao điểm của CD với (MNP)

Chọn mp(SBD) có chứa MP

\(BD\subset\left(SBD\right)\)

\(BD\subset\left(ABCD\right)\)

Do đó: \(BD\subset\left(SBD\right)\cap\left(ABCD\right)\)

Gọi F là giao điểm của MP với BD

=>F là giao điểm của MP với (ABCD)

phú Nguyễn
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 8 2023 lúc 10:01

Gọi O là giao của AC với BD trong mp(ABCD)

Trong mp(SBD), gọi E là giao của SO với DM

\(E\in SO\subset\left(SAC\right)\)

\(E\in DM\subset\left(ADM\right)\)

=>E thuộc (SAC) giao (ADM)

mà \(A\in\left(SAC\right)\cap\left(ADM\right)\)

nên \(\left(SAC\right)\cap\left(ADM\right)=EA\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 5 2017 lúc 4:03

Ta có A là điểm chung thứ nhất.

Gọi 

=> E là điểm chung thứ hai.

Vậy AE là giao tuyến của (ADM) và (SAC)

Chọn B.

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 9 2023 lúc 22:28

a: \(I\in BD\subset\left(SBD\right)\)

\(I\in AC\subset\left(SAC\right)\)

Do đó: \(I\in\left(SBD\right)\cap\left(SAC\right)\)

mà \(S\in\left(SBD\right)\cap\left(SAC\right)\)

nên \(\left(SBD\right)\cap\left(SAC\right)=SI\)

b: Gọi K là giao của AB và CD

\(K\in AB\subset\left(SAB\right)\)

\(K\in CD\subset\left(SCD\right)\)

Do đó: \(K\in\left(SAB\right)\cap\left(SCD\right)\)

mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)

nên \(\left(SAB\right)\cap\left(SCD\right)=SK\)

c: AD//BC

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

Do đó: \(\left(SAD\right)\cap\left(SBC\right)=xy\), xy đi qua S và xy//AD//BC

Nguyễn Mạnh Toàn
Xem chi tiết

c: Điểm O ở đâu vậy bạn

c: Chọn mp(SDC) có chứa MN

Ta có: \(SC\subset\left(SDC\right);SC\subset\left(SAC\right)\)

Do đó: \(\left(SDC\right)\cap\left(SAC\right)=SC \)

Ta có: \(MN\cap SC=\left\{N\right\}\)

=>N là giao điểm của MN và mp(SAC)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 9 2019 lúc 7:36

Giải sách bài tập Toán 11 | Giải sbt Toán 11

(h.2.73) a) Gọi O = AC ∩ MD Trong mặt phẳng (SMB) gọi I = SO ∩ MN.

Ta có: I = (SAC) ∩ MN

b) AD // BC (BC ⊂ (SBC))

⇒ AD // (SBC). Mặt phẳng (SAD) cắt mặt phẳng (NBC) theo giao tuyến NP // AD (P ∈ SA). Ta có thiết diện cần tìm là hình thang BCNP.