c: Chọn mp(SDC) có chứa MN
Ta có: \(SC\subset\left(SDC\right);SC\subset\left(SAC\right)\)
Do đó: \(\left(SDC\right)\cap\left(SAC\right)=SC \)
Ta có: \(MN\cap SC=\left\{N\right\}\)
=>N là giao điểm của MN và mp(SAC)
c: Chọn mp(SDC) có chứa MN
Ta có: \(SC\subset\left(SDC\right);SC\subset\left(SAC\right)\)
Do đó: \(\left(SDC\right)\cap\left(SAC\right)=SC \)
Ta có: \(MN\cap SC=\left\{N\right\}\)
=>N là giao điểm của MN và mp(SAC)
Cho hình chóp SABCO, đây là hình thang (AB//CD). Tim giao tuyến của a (SAD)và(SCB) b Tìm giao tuyến của (SAB)và(SCD) C, Tần Trên SD, SC lấy 2 điểm M, N .Tìm MN giao (SAO).
Cho hình chóp S.ABCD có đáy ABCD là hình thang đáy lớn AD. M, N lần lượt là trung điểm SB, SC và P là điểm nằm trên đoạn SD sao cho PD = 2SP. a) Tìm giao tuyến của mp(SAB) và mp(SCD); giao tuyến của mp (SAC) và mp (SBD). b) Tìm giao tuyến của mp (SAD) và mp(SBC) c) Tìm giao điểm E của CD và mp (MNP); giao F của MP và (ABCD). CỨU EM VỚI QUÝ DỊ ƠI!!!
Bt2: cho hình chóp S.ABCD đáy là tứ giác lồi có AB>CD .gọi M,N lần lượt là trung điểm của cạnh SA và SD .a) tìm giao tuyến (SAB) và (SCD).b) tìm giao tuyến của (MNC) và (ABCD).c)tìm giao điểm của MN và (ABN).d) tìm thiết diện của hình chóp vs mp (BMN)
Cho hình chóp S.ABCD có đáy là hình thang ABCD, đáy lớn AB, M là trung điểm của SD.
a. Tìm giao tuyến của (ABM) và (SCD).
b. Gọi N là trung điểm của SC, P là một điểm trên cạnh BC và khác với điểm B và điểm C. Tìm giao điểm Q của SD với (ANP).
Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AD. Gọi M là điểm thuộc cạnh SC và N là điểm thuộc cạnh AB.
a. Tìm giao tuyến của (SAC) và (SBD).
b. Tìm giao tuyến của (SAB) và (SCD).
c. Tìm giao điểm của AM và (SBD).
d. Tìm giao điểm của DN và (SBC).
cho hình chóp S.ABCD, đáy ABCD là hình thang, có đáy lớn AD. Gọi H,K lần lượt là trung điểm SB, SD, I = AC giao BD.
a) tìm giao tuyến của 2 mặt phẳng (SBD) và (SAC)
b) tìm giao tuyến của 2 mặt phẳng (SAB) và (SCD)
c) tìm giao tuyến của 2 mặt phẳng (SAD) và (SBC)
1) cho hình chóp S.ABCD đáy ABCD là hình chữ nhật, tâm O. Điểm H thuộc cạnh SC
a) tìm giao tuyến của 2 mặt phẳng (SAC) và (SBD)
b) tìm giao tuyến của 2 mặt phẳng (SAB) và (SAD)
c) tìm giao tuyến của 2 mặt phẳng (HAD) và (SCD)
2) cho hình chóp S.ABCD đáy ABCD là hình vuông, tâm I. Điểm K thuộc cạnh SD, vẽ hình
a) tìm giao tuyến của 2 mặt phẳng (SAC) và (SBD)
b) tìm giao tuyến của 2 mặt phẳng (SCD) và (SAD)
c) tìm giao tuyến của 2 mặt phẳng (KAB) và (SAD)
cho hình chóp s.abcd có đáy abcd là hình bình hành. gọi i,j,k theo thứ tự là trung điểm của các cạnh ab, cd và sa. a) tìm giao tuyến của hai mp (SAB)và(SCD) b) CM: IJ // (SCD) c) tìm giao điểm của đường thẳng SD với mp(IJK)
Cho hình chóp S.ABCD có đáy ABCD là hình thang,AB là đáy lớn,O là giao điểm của AC và BD. Gọi M,N lần lược là trung điểm của SB và SD a) Chứng minh CD // (SAB) b) Tìm giao tuyến của hai mặt phẳng (CMN) và (ABCD) c) Gọi P là trung điểm của SC, I là giao điểm của OP và (CMN). Tính tỉ số IP/IO