tập giá trị của hàm số y=\(4\cos2x-3\sin2x+6\) là bao nhiêu ?
Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y = sin 2 x + 2 cos 2 x + 3 2 sin 2 x - cos 2 x + 4
Tập giá trị của hàm số y=sin2x+ 3 cos2x+1 là đoạn [a;b]. Tính tổng T= a+b
A. c1
B. T= 2
C. T= 0
D. T= -1
tập giá trị của hàm số y=\(2\sin2x+3\) là bao nhiêu ?
Tìm giá trị LỚN nhất của hàm số:
\(y=\sqrt{sin2x}+\sqrt{cos2x}\text{trên }\left[\dfrac{\pi}{6};\dfrac{\pi}{4}\right]\)
\(y^2=sin2x+cos2x+2\sqrt{sin2x.cos2x}\)
Đặt \(sin2x+cos2x=t\Rightarrow t\in\left[1;\dfrac{1+\sqrt{3}}{2}\right]\)
\(sin2x.cos2x=\dfrac{t^2-1}{2}\)
\(y^2=f\left(t\right)=t+\sqrt{2\left(t^2-1\right)}\)
\(f'\left(t\right)=1+\dfrac{2t}{\sqrt{2\left(t^2-1\right)}}>0\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow y^2\le f\left(\dfrac{1+\sqrt{3}}{2}\right)=\dfrac{\left(1+\sqrt[4]{3}\right)^2}{2}\)
\(\Rightarrow y\le\dfrac{1+\sqrt[4]{3}}{\sqrt{2}}\)
1. Các nghiệm của phương trình \(\sqrt{3}sin2x-cos2x-2=0\) là?
2. Hàm số \(y=2cos3x+3sin3x-2\) có tất cả bao nhiêu giá trị nguyên dương?
3. Tìm tham số m để phương trình \(msinx-cosx=\sqrt{5}\) có nghiệm
Giúp mk với ạ!
1, Phương trình tương đương
\(\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x=1\)
⇔ \(sin\left(2x-\dfrac{\pi}{6}\right)=1\)
⇔ \(2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k.2\pi\)
⇔ x = \(\dfrac{\pi}{3}+k.\pi\)
2, \(2cos3x+3sin3x-2\)
= \(\sqrt{13}\)\((\dfrac{2}{\sqrt{13}}cos3x+\dfrac{3}{\sqrt{13}}sin3x)\) - 2
Do \(\left(\dfrac{2}{\sqrt{13}}\right)^2+\left(\dfrac{3}{\sqrt{13}}\right)^2=1\) nên tồn tại 1 góc a sao cho \(\left\{{}\begin{matrix}sina=\dfrac{2}{\sqrt{13}}\\cosa=\dfrac{2}{\sqrt{13}}\end{matrix}\right.\)
BT = \(\sqrt{13}sin\left(x+a\right)-2\)
Do - 1 ≤ sin (x + a) ≤ 1 với mọi x và a
⇒ \(-\sqrt{13}-2\le BT\le\sqrt{13}-2\)
⇒ \(-5,6< BT< 1,6\)
Vậy BT nhận 5 giá trị nguyên trong tập hợp S = {-5 ; -4 ; -3 ; -2 ; -1}
3. \(msinx-cosx=\sqrt{5}\)
⇔ \(\dfrac{m}{\sqrt{m^2+1}}.sinx-\dfrac{1}{\sqrt{m^2+1}}.cosx=\dfrac{\sqrt{5}}{\sqrt{m^2+1}}\)
⇔ sin(x - a) = \(\sqrt{\dfrac{5}{m^2+1}}\) với \(\left\{{}\begin{matrix}sina=\dfrac{1}{\sqrt{m^2+1}}\\cosa=\dfrac{m}{\sqrt{m^2+1}}\end{matrix}\right.\)
Điều kiện có nghiệm : \(\left|\sqrt{\dfrac{5}{m^2+1}}\right|\le1\)
⇔ m2 + 1 ≥ 5
⇔ m2 - 4 ≥ 0
⇔ \(\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)
Kí hiệu M là giá trị lớn nhất của hàm số y = sin2x-cos2x Tìm M?
A. M = 2 2
B. M = 1
C. M = 2
D. M = 2
Kí hiệu M là giá trị lớn nhất của hàm số y = sin 2 x - cos 2 x . Tìm M ?
A. M = 2 2
B. M = 1
C. M = 2
D. M = 2
Đáp án D
Ta có: y = 2 1 2 sin 2 x - 1 2 cos 2 x = 2 sin 2 x - π 4 ≤ 2 . 1 = 2 ⇔ sin 2 x - π 4 ⇔ 2 x - π 4 = π 2 + k 2 π ⇔ x = 3 π 8 + kπ
Vậy M = 2 .
1) hàm số \(y=3sinx\) luôn nhận giá trị trong tập nào
2) cho \(cosx=-\dfrac{2}{3}\), \(cos2x\) bằng
3) cho \(cosx=-\dfrac{3}{5}\), \(\dfrac{\pi}{2}< x< \pi\) thì \(sin2x\)
Tìm giá trị lớn nhất của hàm số y=1/sin2x +1/cos2x