Bài 4:Cho phương trình ẩn x: x2 - (m + 3)x + m = 0
a) Chứng minh rằng với mọi giá trị của m phương trình (1) luôn có 2 nghiệm phân biệt.
b) Tìm m để phương trình có 2 nghiệm Phân biệt x1, x2 thỏa mãn hệ thức:
x12 + x22 = 6
cho phương trình ẩn x : x^2 +2(m+3)x. 2m-11 (1)
a/ chứng tỏ phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị của m
b/ Tìm giá trị của m để phương trình (1) có hai nghiệm x1 ,x2 thỏa mãn hệ thức 1/x1+1/x2=2
Cho phương trình x2 + 2 ( m + 3 )x + 2m - 11
a) Ta có:
△' = b'2 - ac = ( m + 3 )2 - 1 . ( 2m - 11 )
m2 - 6m + 9 - 2m + 11
△' = b'2 - ac =
Cho phương trình : x² - 2( m-1)x - 2m=0(I) a. Chứng tỏ rằng phương trình (I) luôn có hai nghiệm phân biệt với mọi giá trị m b. Tính X1 + X2 ; X1.X, theo m c. Tìm m để x1² + x2² = 4
a: Δ=(2m-2)^2-4*(-2m)
=4m^2-8m+4+8m=4m^2+4>0
=>Phương trình luôn có hai nghiệm phân biệt
b: x1+x2=2m-2; x1x2=-2m
c: x1^2+x2^2=4
=>(x1+x2)^2-2x1x2=4
=>(2m-2)^2-2*(-2m)=4
=>4m^2-8m+4+4m=4
=>4m^2-4m=0
=>m=0 hoặc m=1
Cho phương trình x^2 -2mx-(m^2 +4)=0 (1), m là tham số.
a. Chứng minh phương trình (1) luôn có 2 nghiệm phân biệt với mọi giá trị của m.
b. Gọi x1, x2 là 2 nghiệm của phương trình (1. Tìm m để x1^2 + x2^2 =20
Ta có: \(\Delta'=2m^2+4>0\forall m\)
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-m^2-4\end{matrix}\right.\)
Mặt khác: \(x_1^2+x_2^2=20\)
\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\)
\(\Rightarrow4m^2+2m^2-12=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=\dfrac{3}{2}\end{matrix}\right.\)
Vậy ...
cho phương trình x^2-2(m+1)x+m-2=0 với x là ẩn số a) chứng minh phương trình luôn có 2 nghiệm phân biệt với mọi m b) gọi 2 nghiệm của phương trình là x1,x2 tìm GTNN của x1^2+2(m+1)x2-5m+2
a: Δ=(2m+2)^2-4(m-2)
=4m^2+8m+4-4m+8
=4m^2+4m+12
=(2m+1)^2+11>=11>0
=>Phương trình luôn cóhai nghiệm phân biệt
b: x1^2+2(m+1)x2-5m+2
=x1^2+x2(x1+x2)-4m-m+2
=x1^2+x1x2+x2^2-5m+2
=(x1+x2)^2-2x1x2+x1x2-5m+2
=(2m+2)^2-(m-2)-5m+2
=4m^2+8m+4-m+2-5m+2
=4m^2+2m+8
=4(m^2+1/2m+2)
=4(m^2+2*m*1/4+1/16+31/16)
=4(m+1/4)^2+31/4>=31/4
Dấu = xảy ra khi m=-1/4
Cho phương trình ẩn x: x2 – 2mx - 1 = 0 (1)
a) Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt x1 và x2.
b) Tìm các giá trị của m để: x12 + x22 – x1x2 = 7
a, \(\Delta'=\left(-m\right)^2-1\left(-1\right)=m^2+1>0\)
Vậy phương trình đã cho luôn có hai nghiệm phân biệt x1 và x2
b, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-1\end{matrix}\right.\)
\(x^2_1+x^2_2-x_1x_2=7\\ \Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=7\\ \Leftrightarrow\left(2m\right)^2-3\left(-1\right)=7\\ \Leftrightarrow4m^2+3=7\\ \Leftrightarrow4m^2=4\\ \Leftrightarrow m^2=1\\ \Leftrightarrow m=\pm1\)
Cho phương trình: x² - mx + m - 1 = 0(x là ẩn) a) Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị của m b) Tìm giá trị của m để phương trình có 2 nghiệm x1, x2 thoả mãn: x1 - 2x2 = 1
cho phương trình ẩn x: \(x^2=2mx+2m+8\)(1)
a. giải pt đã cho khi m=4
b. Chứng minh PT luôn có 1 nghiệm phân biệt vs mọi m
c. tìm giá trị của m để phương trình (1) có hai nghiệm x1,x2 sao cho x1+ 2x2=2
Cho phương trình bậc 2 ẩn số x:
\(x^2-2\left(m+1\right)x+m-4=0\) (1)
a.Giải phương trình (1) khi m = -5
b.Chứng minh phương trình (1) luôn có hai nghiệm phân biệt x1;x2 với mọi giá trị m
a. Với \(m=-5\) pt trở thành:
\(x^2+8x-9=0\)
\(a+b+c=1+8-9=0\) nên pt có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=-9\end{matrix}\right.\)
b. Ta có:
\(\Delta'=\left(m+1\right)^2-\left(m-4\right)=m^2+m+5=\left(m+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0;\forall m\)
\(\Rightarrow\) Pt đã cho luôn có 2 nghiệm pb với mọi m
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3