Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vvvvvvvv
Xem chi tiết
vvvvvvvv
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
18 tháng 5 2017 lúc 15:55

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

Bình Trần Thị
Xem chi tiết
Phan Thị Minh Uyên
Xem chi tiết
Thiên An
14 tháng 5 2016 lúc 15:17

     \(0\le\sin^2x\le1\Rightarrow0,5^0\ge0,5^{\sin^2x}\ge0,5^1\)

 \(\Leftrightarrow1\ge f\left(x\right)\ge\frac{1}{2}\)

 \(\Leftrightarrow\) Max f(x) = 1 khi \(x=k\pi\)

      Min f(x) =\(\frac{1}{2}\) khi \(x=\frac{\pi}{2}+k\pi\)   \(k\in Z\)

Nguyễn Trọng Nghĩa
14 tháng 5 2016 lúc 15:49

Đặt \(t=\sin^2x\) với \(t\in\left[0;1\right]\Rightarrow f\left(x\right)=0,5^t=g\left(t\right)\) với \(t\in\left[0;1\right]\)

Ta có : \(g'\left(t\right)=0,5^1\ln0,5=-0,5^t\ln2< 0\) với mọi \(t\in\left[0;1\right]\) hàm số nghịch biến với mọi \(t\in\left[0;1\right]\)

\(\Rightarrow0\le t\le1\Rightarrow g\left(0\right)\ge g\left(t\right)\ge g\left(1\right)\Leftrightarrow1\ge g\left(t\right)\ge\frac{1}{2}\)

Vậy Max f(x) = 1 khi \(x=k\pi\)

Min \(f\left(x\right)=\frac{1}{2}\) khi \(x=\frac{\pi}{2}+k\pi\)  (k thuộc Z)

Nguyễn Mạnh Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 10 2023 lúc 12:47

\(f'\left(x\right)=\left(sin^2x\right)'+4\cdot\left(sinx'\right)-5'\)

\(=2\cdot sinx\cdot cosx+4\cdot cosx=2cosx\left(sinx+2\right)\)

\(f'\left(x\right)=0\)

=>\(cosx\left(sinx+2\right)=0\)

=>\(cosx=0\)

=>\(x=\dfrac{\Omega}{2}+k\Omega\)

mà \(x\in\left[0;\dfrac{\Omega}{2}\right]\)

nên \(x=\dfrac{\Omega}{2}\)

\(f\left(\dfrac{\Omega}{2}\right)=sin^2\left(\dfrac{\Omega}{2}\right)+4\cdot sin\left(\dfrac{\Omega}{2}\right)-5\)

=1+4-5=0

\(f\left(0\right)=sin^20+4\cdot sin0-5=-5\)

=>Chọn D

Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 5 2022 lúc 23:38

Tham khảo:

Thiên Yết
Xem chi tiết