Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mèo Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 22:24

Biểu thức gì vậy bạn?

Mèo Dương
15 tháng 10 2023 lúc 22:29

tìm các giá trị nguyên của x để biểu thức P=A.B  nhận giá trị nguyên

Minh Anh Vũ
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 8 2021 lúc 16:24

\(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\left(x\ge0;x\ne9\right)=\dfrac{\sqrt{x}+3-2}{\sqrt{x}+3}=1-\dfrac{2}{\sqrt{x}+3}\)

Để \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\in Z\Leftrightarrow\dfrac{2}{\sqrt{x}+3}\in Z\)

\(\Leftrightarrow2⋮\sqrt{x}+3\\ \Leftrightarrow\sqrt{x}+3\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{-5;-4;-2;-1\right\}\\ \Leftrightarrow x\in\left\{1;4;16;25\right\}\)

Vậy \(x\in\left\{1;4;16;25\right\}\) thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\in Z\)

Tick plz

ILoveMath
20 tháng 8 2021 lúc 16:26

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}+3\ne0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne-3\left(loại\right)\end{matrix}\right.\)\(\Rightarrow x\ge0\)

\(x\in Z\Rightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\in Z\Rightarrow\left(\sqrt{x}+1\right)⋮\left(\sqrt{x}+3\right)\)

\(\Rightarrow\left(\sqrt{x}+3-2\right)⋮\left(\sqrt{x}+3\right)\)

Vì \(\Rightarrow\left(\sqrt{x}+3\right)⋮\left(\sqrt{x}+3\right)\)

\(\Rightarrow2⋮\left(\sqrt{x}+3\right)\Rightarrow\sqrt{x}+3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Ta có bảng:

\(\sqrt{x}+3\)-1-212
\(x\)\(\sqrt{x}=-4\left(loại\right)\)\(\sqrt{x}=-5\left(loại\right)\)\(\sqrt{x}=-2\left(loại\right)\)\(\sqrt{x}=-1\left(loại\right)\)

 

Vậy không có x nguyên thỏa mãn đề bài

 

Lấp La Lấp Lánh
20 tháng 8 2021 lúc 16:28

\(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}=\dfrac{\sqrt{x}+3}{\sqrt{x}+3}-\dfrac{2}{\sqrt{x}+3}=1-\dfrac{2}{\sqrt{x}+3}\)

Để \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\in Z\) thì \(2⋮\sqrt{x}+3\Rightarrow\sqrt{x}+3\in\) Ư(2)\(=\left\{1;-1;2;-2\right\}\)

Vì \(\sqrt{x}\ge0\Rightarrow x\in\varnothing\)

Yết Thiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2022 lúc 12:30

a: \(P=\left(\dfrac{2+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

b: Để P nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-1\)

\(\Leftrightarrow\sqrt{x}-1\in\left\{-1;1;2\right\}\)

hay \(x\in\left\{0;4;9\right\}\)

Trần Lê Vy
Xem chi tiết
nha:)))
5 tháng 9 2023 lúc 18:21

loading...  

Nguyễn Lê Phước Thịnh
5 tháng 9 2023 lúc 17:38

loading...  

Mèo Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 22:40

\(P=A\cdot B\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\cdot\dfrac{2\sqrt{x}+6+x-3\sqrt{x}+3-5\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)}\cdot\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}-3\right)^2}=\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)

Để P nguyên thì 

\(2\sqrt{x}⋮\sqrt{x}+3\)

\(\Leftrightarrow2\sqrt{x}+6-6⋮\sqrt{x}+3\)

=>\(\sqrt{x}+3\inƯ\left(-6\right)\)

=>\(\sqrt{x}+3\in\left\{3;6\right\}\)

=>\(\sqrt{x}\in\left\{0;3\right\}\)

=>\(x\in\left\{0;9\right\}\)

Kết hợp ĐKXĐ, ta được: x=0

Đinh Hoàng Nhất Quyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2023 lúc 13:01

Để M là số nguyên thì \(12\sqrt{x}+5⋮3\sqrt{x}-1\)

=>\(12\sqrt{x}-4+9⋮3\sqrt{x}-1\)

=>\(3\sqrt{x}-1\in\left\{1;-1;3;-3;9;-9\right\}\)

=>\(3\sqrt{x}\in\left\{2;0;4;10\right\}\)

=>\(\sqrt{x}\in\left\{0;\dfrac{2}{3};\dfrac{4}{3};\dfrac{10}{3}\right\}\)

mà x là số chính phương

nên x=0

HT.Phong (9A5)
30 tháng 8 2023 lúc 13:06

\(M=\dfrac{12\sqrt{x}+5}{3\sqrt{x}-1}\)

\(M=\dfrac{12\sqrt{x}-4+9}{3\sqrt{x}-1}\)

\(M=\dfrac{4\left(3\sqrt{x}-1\right)+9}{3\sqrt{x}-1}\)

\(M=\dfrac{4\left(3\sqrt{x}-1\right)}{3\sqrt{x}-1}+\dfrac{9}{3\sqrt{x}-1}\)

\(M=4+\dfrac{9}{3\sqrt{x}-1}\)

M nguyên khi: 

\(9\) ⋮ \(3\sqrt{x}-1\)

Mà: \(3\sqrt{x}-1\ge-1\)

\(\Rightarrow3\sqrt{x}-1\in\left\{1;-1;3;9\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};\dfrac{10}{3}\right\}\)

\(\Rightarrow x\in\left\{\dfrac{4}{9};0;\dfrac{16}{9};\dfrac{100}{9}\right\}\)

Mà: x là số chính phương nên:

x = 0

nam anh đinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2023 lúc 9:17

ĐKXĐ: x>=0

Để A là số nguyên thì \(\sqrt{x}+13⋮\sqrt{x}+5\)

=>\(\sqrt{x}+5+8⋮\sqrt{x}+5\)

=>\(\sqrt{x}+5\inƯ\left(8\right)\)

mà \(\sqrt{x}+5>=5\)

nên \(\sqrt{x}+5=8\)

=>x=9

HT.Phong (9A5)
18 tháng 8 2023 lúc 9:28

ĐK: \(x\ge0\) 

Để \(\dfrac{\sqrt{x}+13}{\sqrt{x}+5}\) có giá trị nguyên 

Mà:  \(\dfrac{\sqrt{x}+13}{\sqrt{x}+5}=\dfrac{\sqrt{x}+5+8}{\sqrt{x}+5}\)

\(=\dfrac{\sqrt{x}+5}{\sqrt{x}+5}+\dfrac{8}{\sqrt{x}+5}=1+\dfrac{8}{\sqrt{x}+5}\)

Vậy:  \(8\) ⋮ \(\sqrt{x}+5\)

\(\Rightarrow\sqrt{x}+5\inƯ\left(8\right)=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

Mà: \(\sqrt{x}+5\ge5\)

\(\Rightarrow\sqrt{x}+5\in\left\{8\right\}\)

\(\Rightarrow x=9\left(tm\right)\)

Vinne
Xem chi tiết
hilo
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 12 2022 lúc 0:27

ĐKXĐ: \(x>0;x\ne9\)

\(P=\left(\dfrac{x+7}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\dfrac{4\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\right)\left(\dfrac{\sqrt{x}+6}{\sqrt{x}}\right)\)

\(=\left(\dfrac{x+7-4\sqrt{x}-4+\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\right)\left(\dfrac{\sqrt{x}+6}{\sqrt{x}}\right)\)

\(=\left(\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\right).\left(\dfrac{\sqrt{x}+6}{\sqrt{x}}\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}.\dfrac{\left(\sqrt{x}+6\right)}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+6}{\sqrt{x}+1}\)

b.

Ta có \(P=\dfrac{\sqrt{x}+1+5}{\sqrt{x}+1}=1+\dfrac{5}{\sqrt{x}+1}\)

Do \(\sqrt{x}+1>0\Rightarrow\dfrac{5}{\sqrt{x}+1}>0\Rightarrow P>1\)

\(P=\dfrac{6\left(\sqrt{x}+1\right)-5\sqrt{x}}{\sqrt{x}+1}=6-\dfrac{5\sqrt{x}}{\sqrt{x}+1}\)

Do \(\left\{{}\begin{matrix}5\sqrt{x}>0\\\sqrt{x}+1>0\end{matrix}\right.\) ;\(\forall x>0\Rightarrow\dfrac{5\sqrt{x}}{\sqrt{x}+1}>0\)

\(\Rightarrow P< 6\Rightarrow1< P< 6\)

Mà P nguyên \(\Rightarrow P=\left\{2;3;4;5\right\}\)

- Để \(P=2\Rightarrow\dfrac{\sqrt{x}+6}{\sqrt{x}+1}=2\Rightarrow\sqrt{x}+6=2\sqrt{x}+2\Rightarrow x=16\)

- Để \(P=3\Rightarrow\dfrac{\sqrt{x}+6}{\sqrt{x}+1}=3\Rightarrow\sqrt{x}+6=3\sqrt{x}+3\Rightarrow\sqrt{x}=\dfrac{3}{2}\Rightarrow x=\dfrac{9}{4}\)

- Để \(P=4\Rightarrow\dfrac{\sqrt{x}+6}{\sqrt{x}+1}=4\Rightarrow\sqrt{x}+6=4\sqrt{x}+4\Rightarrow\sqrt{x}=\dfrac{2}{3}\Rightarrow x=\dfrac{4}{9}\)

- Để \(P=5\Rightarrow\dfrac{\sqrt{x}+6}{\sqrt{x}+1}=5\Rightarrow\sqrt{x}+6=5\sqrt{x}+5\Rightarrow\sqrt{x}=\dfrac{1}{4}\Rightarrow x=\dfrac{1}{16}\)