tìm các giá trị nguyên của x để biểu thức P=A.B nhận giá trị nguyên
tìm các giá trị nguyên của x để biểu thức P=A.B nhận giá trị nguyên
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}-3}vàB=\dfrac{2}{\sqrt{x}-3}+\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{3-5\sqrt{x}}{9-x}\) với x ≥ 0, x ≠ 9
tìm các giá trị nguyên của x để biểu thức P=A.B nhận giá trị nguyên
1/ Cho hai biểu thức A=\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\) và B=\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)+ \(\dfrac{\sqrt{x}}{\sqrt{x}-3}\)-\(\dfrac{2x}{x-9}\) với x>0 , x≠9
a) Rút gọn biểu thức B
b) Tìm các giá trị nguyên của x để P<0 với P=A.B
\(\left(\dfrac{2\sqrt{x}}{\sqrt{x+3}}+\dfrac{\sqrt{x}}{\sqrt{x-3}}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{\sqrt{x-1}}{\sqrt{x-3}}-\dfrac{1}{2}\right)\)
rút gọn A
tìm các giá trị x nguyên để biểu thức trên nguyên
Cho 2 biểu thức A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\) và B\(\dfrac{3}{\sqrt{x}+5}+\dfrac{20-2\sqrt{x}}{x-25}\) với x ≥ 0 ; x≠ 25
a) Tính giá trị biểu thức khi x = 9. Chứng minh rằng B =\(\dfrac{1}{\sqrt{x}+5}\)
b) Tìm tất cả các giá trị của x để A = B .|x-4|
Cho biểu thức A = \(\dfrac{\sqrt{x}-2}{\sqrt{x}}\) và B = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{2x}{x-9}\) Đk: x>0, x≠9
a, Rút gọn B
b, Đặt P = A.B. Tìm giá trị nguyên nhỏ nhất của x để |P| > P.
Cho 2 biểu thức A= \(\dfrac{7}{\sqrt{x}+8}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{x-9}\)
a) Chứng minh B= \(\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)
b) Tìm GTLN của B
c) Tìm số nguyên x để biểu thức P = A.B có giá trị là số nguyên.
cho A=\(\left(\dfrac{3x+3}{x-9}-\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{3-\sqrt{x}}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
tính x để A\(>\dfrac{1}{2}\)
tính giá trị nguyên của x để biểu thức Q= \(\dfrac{2P\sqrt{x}}{3}\) nhận giá trị nguyên
Cho biểu thức : A= \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\) , với x ≥ 0 và x ≠ 9
a) Rút gọn biểu thức A.
b) Tìm gi trị của x để A = \(\dfrac{1}{3}\).
c) Tìm giá trị lớn nhất của biểu thức A.
Cho hai biểu thức \(A=\dfrac{2\sqrt{x}+3}{5x-10\sqrt{x}}\) và \(B=\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\) với x>0, x≠4. Tìm x sao cho \(\dfrac{B}{A}\)nhận giá trị là một số nguyên.