Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Phan Thảo Đan
Xem chi tiết
Lấp La Lấp Lánh
4 tháng 10 2021 lúc 22:58

a) \(4x^2+12x+1=\left(4x^2+12x+9\right)-8=\left(2x+3\right)^2-8\ge-8\)

\(ĐTXR\Leftrightarrow x=-\dfrac{3}{2}\)

b) \(4x^2-3x+10=\left(4x^2-3x+\dfrac{9}{16}\right)+\dfrac{151}{16}=\left(2x-\dfrac{3}{4}\right)^2+\dfrac{151}{16}\ge\dfrac{151}{16}\)

\(ĐTXR\Leftrightarrow x=\dfrac{3}{8}\)

c) \(2x^2+5x+10=\left(2x^2+5x+\dfrac{25}{8}\right)+\dfrac{55}{8}=\left(\sqrt{2}x+\dfrac{5\sqrt{2}}{4}\right)^2+\dfrac{55}{8}\ge\dfrac{55}{8}\)

\(ĐTXR\Leftrightarrow x=-\dfrac{5}{4}\)

d) \(x-x^2+2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{9}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)

\(ĐTXR\Leftrightarrow x=\dfrac{1}{2}\)

e) \(2x-2x^2=-2\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{2}=-2\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\le\dfrac{1}{2}\)

\(ĐTXR\Leftrightarrow x=\dfrac{1}{2}\)

f) \(4x^2+2y^2+4xy+4y+5=\left(4x^2+4xy+y^2\right)+\left(y^2+4y+4\right)+1=\left(2x+y\right)^2+\left(y+2\right)^2+1\ge1\)

\(ĐTXR\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
4 tháng 10 2021 lúc 22:55

a: Ta có: \(4x^2+12x+1\)

\(=4x^2+12x+9-8\)

\(=\left(2x+3\right)^2-8\ge-8\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)

b: Ta có: \(4x^2-3x+10\)

\(=4\left(x^2-\dfrac{3}{4}x+\dfrac{5}{2}\right)\)

\(=4\left(x^2-2\cdot x\cdot\dfrac{3}{8}+\dfrac{9}{64}+\dfrac{151}{64}\right)\)

\(=4\left(x-\dfrac{3}{8}\right)^2+\dfrac{151}{16}\ge\dfrac{151}{16}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{8}\)

c: Ta có: \(2x^2+5x+10\)

\(=2\left(x^2+\dfrac{5}{2}x+5\right)\)

\(=2\left(x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{55}{16}\right)\)

\(=2\left(x+\dfrac{5}{4}\right)^2+\dfrac{55}{8}\ge\dfrac{55}{8}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{5}{4}\)

sakura
Xem chi tiết
Kiệt Nguyễn
26 tháng 7 2019 lúc 16:13

Đặt \(C=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(=\left|2x-1\right|+\left|2x-3\right|\)

\(=\left|2x-1\right|+\left|3-2x\right|\)

\(\ge\left|\left(2x-1\right)+\left(3-2x\right)\right|=\left|2\right|=2\)

Vậy \(C_{min}=2\)

T.Ps
26 tháng 7 2019 lúc 16:16

#)Giải :

\(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(=\left|2x-1\right|+\left|2x-3\right|\)

\(=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=2\)

Dấu ''='' xảy ra khi x = 1

💋Bevis💋
26 tháng 7 2019 lúc 16:35

\(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(=|2x-1|+|2x-3|\)

\(=|2x-1|+|3-2x|\ge|2x-1+3-2x|=2\)

Dấu"=" xảy ra \(\Leftrightarrow\left(2x-1\right)\left(3-2x\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)

Chỉ là góp ý:V

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 1 2020 lúc 4:42

Đáp án D

lim x → + ∞ 4 x 2 − x + 1 2 x + 1 = lim x → + ∞ 4 − 1 x + 1 x 2 2 + 1 x = 1

lim x → − ∞ 4 x 2 − x + 1 2 x + 1 = lim x → + ∞ − 4 − 1 x + 1 x 2 2 + 1 x = − 1

Tuyết Ly
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 10 2021 lúc 7:58

\(a,=x^2-8x+16+1=\left(x-4\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow x=4\)

\(b,=\left(4x^2-12x+9\right)+4=\left(2x-3\right)^2+4\ge4\)

Dấu \("="\Leftrightarrow x=\dfrac{3}{2}\)

\(c,=\left(9x^2-2\cdot3\cdot\dfrac{1}{3}x+\dfrac{1}{9}\right)+\dfrac{26}{9}=\left(3x-\dfrac{1}{3}\right)^2+\dfrac{26}{9}\ge\dfrac{26}{9}\)

Dấu \("="\Leftrightarrow3x=\dfrac{1}{3}\Leftrightarrow x=\dfrac{1}{9}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 1 2018 lúc 7:44

Anna Lee
Xem chi tiết
qlamm
29 tháng 11 2021 lúc 9:26

ảnh lỗi r ạ

* Lục Chi Ngang Nhan Mạt...
29 tháng 11 2021 lúc 9:26

Lỗi rùi

An Phú 8C Lưu
29 tháng 11 2021 lúc 9:27

lưu ảnh rồi gửi vào đây nhé

Tuyết Ly
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 10 2021 lúc 9:48

\(a,\Leftrightarrow\left(x-2\right)\left(3x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-2\right)^3=0\Leftrightarrow x-2=0\Leftrightarrow x=2\\ c,\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{7}\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Alicia
Xem chi tiết
Yeutoanhoc
26 tháng 8 2021 lúc 20:08

`a)x^2-2x+2+4y^2+4y`

`=x^2-2x+1+4y^2+4y+1`

`=(x-1)^2+(2y+1)^2`

`b)4x^2+y^2+12x+4y+13`

`=4x^2+12x+9+y^2+4y+4`

`=(2x+3)^2+(y+2)^2`

`c)x^2+17+4y^2+8x+4y`

`=x^2+8x+16+4y^2+4y+1`

`=(x+4)^2+(2y+1)^2`

`d)4x^2-12xy+y^2-4y+13`

`=4x^2-12x+9+y^2-4y+4`

`=(2x-3)^2+(y-2)^2`

Lấp La Lấp Lánh
26 tháng 8 2021 lúc 20:10

a) \(x^2-2x+2+4y^2+4y=\left(x-1\right)^2+\left(2y+1\right)^2\)

b) \(4x^2+y^2+12x+4y+13=\left(2x+3\right)^2+\left(y+2\right)^2\)

c) \(x^2+17+4y^2+8x+4y=\left(x+4\right)^2+\left(2y+1\right)^2\)

d) \(4x^2-12x+y^2-4y+13=\left(2x-3\right)^2+\left(y-2\right)^2\)

Nguyễn Lê Phước Thịnh
26 tháng 8 2021 lúc 22:47

a: \(x^2-2x+2+4y^2+4y\)

\(=x^2-2x+1+4y^2+4y+1\)

\(=\left(x-1\right)^2+\left(2y+1\right)^2\)

b: \(4x^2+12x+y^2+4y+13\)

\(=4x^2+12x+9+y^2+4y+4\)

\(=\left(2x+3\right)^2+\left(y+2\right)^2\)

c: \(x^2+8x+4y^2+4y+17\)

\(=x^2+8x+16+4y^2+4y+1\)

\(=\left(x+4\right)^2+\left(2y+1\right)^2\)

d: \(4x^2-12x+y^2-4y+13\)

\(=4x^2-12x+9+y^2-4y+4\)

\(=\left(2x-3\right)^2+\left(y-2\right)^2\)

ASOC
Xem chi tiết