Tại sao sin3x=2sin3x/2cos3x/2
Giải phương trình sin3x(cosx - 2sin3x) + cos3x(1 + sinx - 2cos3x) = 0
A. x = ± π 3 + k2π, k ∈ Z
B. x = π 4 + kπ, k ∈ Z
C. x = - π 4 + k2π, x = - π 6 + k2π,k ∈ Z
D. Vô nghiệm
Giải phương trình :
\(sin3x\left(cosx-2sin3x\right)+cos3x\left(1+sinx-2cos3x\right)=0\)
\(\Leftrightarrow sin3x.cosx+cos3x.sinx-2\left(sin^23x+cos^23x\right)+cos3x=0\)
\(\Leftrightarrow sin4x+cos3x-2=0\)
Do \(\left\{{}\begin{matrix}sin4x\le1\\cos3x\le1\end{matrix}\right.\) \(\Rightarrow sin4x+cos3x-2\le0\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}sin4x=1\\cos3x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=\frac{\pi}{2}+k2\pi\\3x=n2\pi\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{2}\\x=\frac{n2\pi}{3}\end{matrix}\right.\)
Biểu diễn trên đường tròn lượng giác thì 2 tập nghiệm này ko có điểm chung
Vậy pt vô nghiệm
2sin3x=cosx
phương trình đẳng cấp bậc 2 ạ
cos3x+sin3x=sinx-cosx
2sin3x = cosx (sin2x + cos2x)
⇔ 2sin3x - sin2x cosx - cos3x = 0
+ Xét cosx = 0 ........
+ Xét cosx khác 0 rồi chia cho cos3x rồi đưa về phương trình bậc 3 của tanx
sin3x + cos3x = sinx - cosx
Nhân cos2x + sin2x là thành câu trên
Tìm điều kiện của tham số m để hàm số sau có tập xác định là R
\(y=\dfrac{1}{\sqrt{2sin3x+2cos3x-m}}\)
Hàm xác định trên R khi với mọi x ta có:
\(2sin3x+2cos3x-m>0\)
\(\Leftrightarrow sin3x+cos3x>\dfrac{m}{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(3x+\dfrac{\pi}{4}\right)>\dfrac{m}{2}\)
\(\Rightarrow\dfrac{m}{2\sqrt{2}}< \min\limits_Rsin\left(3x+\dfrac{\pi}{4}\right)=-1\)
\(\Rightarrow m< -2\sqrt{2}\)
Giải phương trình
1,sin3x+cos2x=1+2sinx*cos2x
2,cos5x+cos2x+2sin3x*sin2x=0
Giải pt
\(\frac{2cos3x}{1-sin3x}=0\)
ĐKXĐ: \(sin3x\ne1\) \(\Rightarrow cos3x\ne0\)
\(\Rightarrow\) Phương trình vô nghiệm
2 cos 3 x = sin 3 x phương trình đã cho có nghiệm x = π 4 + k π x = a r c t a n + k π k ∈ Z vậy A là:
A.2
B.3
C.4
D.-2
Tìm m để pt có nghiệm
1. (m+1)sinx-3cosx=m
Tìm m để pt vô nghiệm
3sin2x+4msin2x-4=0
3. Giải pt lượng giác
(2cosx-sinx)(1+sinx)=cos2x
Cosxcosx/2cos3x/2-sinxsinx/2sin3x/2=1/2
1.
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\left(m+1\right)^2+\left(-3\right)^2\ge m^2\)
\(\Leftrightarrow...\)
2.
\(\Leftrightarrow3\left(\frac{1}{2}-\frac{1}{2}cos2x\right)+4m.sin2x-4=0\)
\(\Leftrightarrow8m.sin2x-3cos2x=5\)
Pt vô nghiệm khi: \(\left(8m\right)^2+\left(-3\right)^2< 5^2\)
\(\Leftrightarrow...\)
9. Rút gọn các biểu thức sau
A= cos7x - cos8x - cos9x + cos10x / sin7x - sin8x - sin9x + sin10x
B = sin2x + 2sin3x + sin4x / sin3x +2sin4x + sin5x
C= 1+cosx + cos2x + cos3x / cosx + 2cos^2 . x -1
D = sin4x + sin5x + sin6x / cos4x + cos5x + cos6x
\(D=\frac{sin4x+sin5x+sin6x}{cos4x+cos5x+cos6x}\)
\(=\frac{\left(sin4x+sin6x\right)+sin5x}{\left(cos4x+cos6x\right)+cos5x}\)
\(=\frac{2sin\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+sin5x}{2cos\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+cos5x}\)
\(=\frac{2sin5x.cos\left(-x\right)+sin5x}{2cos5x.cos\left(-x\right)+cos5x}=\frac{sin5x\left(2.cos\left(-x\right)+1\right)}{cos5x\left(2.cos\left(-x\right)+1\right)}=\frac{sin5x}{cos5x}=tan5x\)