Giải các phương trình sau:
a) 2x−5=0;
b) \(4 - \frac{2}{5}x = 0\)
giải các phương trình sau:
a) \(\dfrac{2a}{2x-3a}-1=0\)
ĐKXĐ: \(x\ne\dfrac{3a}{2}\)
- Với \(a=0\) pt vô nghiệm
- Với \(a\ne0\)
\(\dfrac{2a}{2x-3a}=1\Leftrightarrow2a=2x-3a\)
\(\Leftrightarrow2x=5a\Rightarrow x=\dfrac{5a}{2}\)
giải các phương trình sau:
a. \(\dfrac{1}{2}\sqrt{x-5}-\sqrt{4x-20+3}=0\)
b. \(\sqrt{2x+1}-2\sqrt{x}+1=0\)
a, \(\dfrac{1}{2}\sqrt{x-5}-\sqrt{4x-20+3}=0\left(dkxd:x\ge5\right)\)
\(< =>\dfrac{\sqrt{x-5}}{2}=\sqrt{4x-17}\)
\(< =>\dfrac{x-5}{4}=4x-17\)
\(< =>x-5=16x-68\)
\(< =>15x=68-5=63\)
\(< =>x=\dfrac{63}{15}=\dfrac{21}{5}\)(ktm)
b, \(\sqrt{2x+1}-2\sqrt{x}+1=0\left(dkxd:x\ge0\right)\)
\(< =>\sqrt{2x+1}+1=2\sqrt{x}\)
\(< =>2x+1+1+2\sqrt{2x+1}=4x\)
\(< =>2x-2\sqrt{2x+1}-2=0\)
\(< =>2x+1-2\sqrt{2x+1}+1-4=0\)
\(< =>\left(\sqrt{2x+1}-1\right)^2=4\)
\(< =>\left\{{}\begin{matrix}\sqrt{2x+1}-1=2\\\sqrt{2x+1}-1=-2\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}\sqrt{2x+1}=3\\\sqrt{2x+1}=-1\left(loai\right)\end{matrix}\right.\)
\(< =>2x+1=9< =>2x=8< =>x=4\)(tmdk)
Giải các phương trình sau:
a) \(\sin 2x + \cos 4x = 0\); b) \(\cos 3x = - \cos 7x\)
a) \(\sin 2x + 1 - 2{\sin ^2}2x = 0\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sin 2x = 1}\\{\sin 2x = - \frac{1}{2}}\end{array}\;\;\;} \right. \Leftrightarrow \;\left[ {\begin{array}{*{20}{c}}{\sin 2x = \sin \frac{\pi }{2}}\\{\sin 2x = \sin - \frac{\pi }{6}}\end{array}} \right.\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x = \frac{\pi }{2} + k2\pi }\\{2x = - \frac{\pi }{6} + k2\pi }\\{2x = \pi + \frac{\pi }{6} + k2\pi }\end{array}} \right.\;\;\)
\( \Leftrightarrow \;\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{4} + k2\pi }\\{x = - \frac{\pi }{{12}} + k\pi }\\{x = \frac{{7\pi }}{{12}} + k\pi }\end{array}} \right.\;\;\left( {k \in \mathbb{Z}} \right)\)
b) \(\cos 3x = - \cos 7x\; \Leftrightarrow \cos 3x + \cos 7x = 0\;\; \Leftrightarrow 2\cos 5x\cos 2x = 0\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos 5x = 0}\\{\cos 2x = 0\;}\end{array}} \right.\;\;\)
\( \Leftrightarrow \left[ \begin{array}{l}\cos 5x = \cos \frac{\pi }{2}\\\cos 2x = \cos \frac{\pi }{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}5x = \frac{\pi }{2} + k2\pi \\5x = - \frac{\pi }{2} + k2\pi \\2x = \frac{\pi }{2} + k2\pi \\2x = - \frac{\pi }{2} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{10}} + \frac{{k2\pi }}{5}\\x = - \frac{\pi }{{10}} + \frac{{k2\pi }}{5}\\x = \frac{\pi }{4} + k\pi \\x = - \frac{\pi }{4} + k\pi \end{array} \right.;k \in Z\)
Giải các bất phương trình sau:
a)\(\dfrac{\left(2x-5\right)\left(x+2\right)}{-4x+3}>0\) b)\(\dfrac{x-3}{x+1}=\dfrac{x+5}{x-2}\)
a, \(\dfrac{\left(2x-5\right)\left(x+2\right)}{4x-3}< 0\)
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}\left(2x-5\right)\left(x+2\right)< 0\\4x-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}\left(2x-5\right)\left(x+2\right)>0\\4x-3< 0\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-2< x< \dfrac{5}{2}\\x>\dfrac{3}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}\left[{}\begin{matrix}x< -2\\x>\dfrac{5}{2}\end{matrix}\right.\\x< \dfrac{3}{4}\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\dfrac{3}{4}< x< \dfrac{5}{2}\\x< -2\end{matrix}\right.\)
Vậy tập nghiệm của bất phương trình là
S = \(\left(\dfrac{3}{4};\dfrac{5}{2}\right)\cup\left(-\infty;-2\right)\)
b, Pt
⇔ \(\left\{{}\begin{matrix}x^2-5x+6=x^2+6x+5\\x\in R\backslash\left\{-1;2\right\}\end{matrix}\right.\)
⇔ x = \(\dfrac{1}{11}\)
Vậy S = \(\left\{\dfrac{1}{11}\right\}\)
Giải các phương trình sau:
a) \(\sqrt 3 \tan 2x = - 1\); b) \(\tan 3x + \tan 5x = 0\)’
a) \(\sqrt 3 \tan 2x = - 1\;\; \Leftrightarrow \tan 2x = - \frac{1}{{\sqrt 3 }}\;\;\; \Leftrightarrow \tan 2x = \tan - \frac{\pi }{6}\; \Leftrightarrow 2x = - \frac{\pi }{6} + k\pi \)
\(\;\; \Leftrightarrow x = - \frac{\pi }{{12}} + \frac{{k\pi }}{2}\;\left( {k \in \mathbb{Z}} \right)\)
b) \(\tan 3x + \tan 5x = 0\;\; \Leftrightarrow \tan 3x = \tan \left( { - 5x} \right) \Leftrightarrow 3x = - 5x + k\pi \;\; \Leftrightarrow 8x = k\pi \;\; \Leftrightarrow x = \frac{{k\pi }}{8}\;\left( {k \in \mathbb{Z}} \right)\)
Giải các hệ phương trình sau:
a.{2x-3y = -5
{-3x + 4y = 2
b.{2x - 3y = -5
{-3x + 4y = 2
\(a,\Leftrightarrow\left\{{}\begin{matrix}6x-9y=-15\\-6x+8y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=-5\\-y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-5+33}{2}=14\\y=11\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}2x-3y=-5\\-3x+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-9y=-15\\-6x+8y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-y=-11\\2x-3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=11\\x=\dfrac{-5+3y}{2}=\dfrac{-5+3\cdot11}{2}=14\end{matrix}\right.\)
Đề thi môn toán 8 học kì 2
Câu 1 Giải các phương trình sau:
a) x-2=0, b) (x+5)(2x-7)=0. =c) . 5x/x+2 =4
Câu 2. a) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: a )2x-6>_(hoặc bằng)=0.
b) Cho a<b. Chứng minh
: -3a+7> -3b+7
Câu 3 (1,0 điểm). Giải bài toán bằng cách lập phương trình:
Một người đi ôtô từ huyện Cao Lãnh đến huyện Thanh Bình với vận tốc 40 km/h. Sau khi đi đến huyện Thanh Bình người đó giải quyết công việc hết 30 phút .rồi quay về huyện Cao Lãnh với vận tốc 50 km/h. Biết thời gian cả đi và về hết 2 giờ 18 phút (kể cả thời gian giải quyết công việc). Tính quãngđường từ huyện Cao Lãnh đến huyện Thanh Bình.
Câu 4 (1,0 điểm). Một container chứa hàng có kích thước như sau: dài 6m, rộng 2,4m; cao 2,6m. Tínhthể tích của thùng container.
Câu 5 (3,0 điểm). Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm. Kẻ AH vuông góc với BC tại H
a) Chứng minh: tamgiácHBA đồng dạng với tamgiácABC.
b) Chứng minh: AB2 =BH.BC
c) Tính độ dài cạnh BC, BH.
Phân giác của góc ACB cắt AH tại E và cắt AB tại D. Tính tỉ số diện tích của tam giác ACD và tam giácHCE.
Giúp mình với mn ơii .mai mình nộp r
GIUP VOI MOI NGUOI OI .CUU EM VOIIIIII !!!!!!!!!!
câu 1
a) 5x(x-2)=0 =>\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b)(x+5)(2x-7)=0 =>\(\left[{}\begin{matrix}x+5=0\\2x-7=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=-5\\x=\dfrac{7}{2}\end{matrix}\right.\)
Giải các bất phương trình sau:
a) \(0,{1^{2x - 1}} \le 0,{1^{2 - x}};\)
b) \({3.2^{x + 1}} \le 1.\)
a) \(0,{1^{2x - 1}} \le 0,{1^{2 - x}} \Leftrightarrow 2x - 1 \ge 2 - x \Leftrightarrow 3x \ge 3 \Leftrightarrow x \ge 1\)
b) \({3.2^{x + 1}} \le 1 \Leftrightarrow {2^{x + 1}} \le \frac{1}{3} \Leftrightarrow x + 1 \le {\log _2}\frac{1}{3} \Leftrightarrow x \le - {\log _2}3 - 1 = - {\log _2}3 - {\log _2}2 = - {\log _2}6\)
Giải các phương trình sau:
a) \(2sin\left(x+\dfrac{\pi}{5}\right)+\sqrt{3}=0\)
b)\(sin\left(2x-50\text{°}\right)=\dfrac{\sqrt{3}}{2}\)
c)\(\sqrt{3}tan\left(2x-\dfrac{\pi}{3}\right)-1=0\)
a: \(2\cdot sin\left(x+\dfrac{\Omega}{5}\right)+\sqrt{3}=0\)
=>\(2\cdot sin\left(x+\dfrac{\Omega}{5}\right)=-\sqrt{3}\)
=>\(sin\left(x+\dfrac{\Omega}{5}\right)=-\dfrac{\sqrt{3}}{2}\)
=>\(\left[{}\begin{matrix}x+\dfrac{\Omega}{5}=-\dfrac{\Omega}{3}+k2\Omega\\x+\dfrac{\Omega}{5}=\dfrac{4}{3}\Omega+k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{8}{15}\Omega+k2\Omega\\x=\dfrac{4}{3}\Omega-\dfrac{\Omega}{5}+k2\Omega=\dfrac{17}{15}\Omega+k2\Omega\end{matrix}\right.\)
b: \(sin\left(2x-50^0\right)=\dfrac{\sqrt{3}}{2}\)
=>\(\left[{}\begin{matrix}2x-50^0=60^0+k\cdot360^0\\2x-50^0=300^0+k\cdot360^0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2x=110^0+k\cdot360^0\\2x=350^0+k\cdot360^0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=55^0+k\cdot180^0\\x=175^0+k\cdot180^0\end{matrix}\right.\)
c: \(\sqrt{3}\cdot tan\left(2x-\dfrac{\Omega}{3}\right)-1=0\)
=>\(\sqrt{3}\cdot tan\left(2x-\dfrac{\Omega}{3}\right)=1\)
=>\(tan\left(2x-\dfrac{\Omega}{3}\right)=\dfrac{1}{\sqrt{3}}\)
=>\(2x-\dfrac{\Omega}{3}=\dfrac{\Omega}{6}+k2\Omega\)
=>\(2x=\dfrac{1}{2}\Omega+k2\Omega\)
=>\(x=\dfrac{1}{4}\Omega+k\Omega\)
Giải các bất phương trình bậc hai sau:
a) \(3{x^2} - 2x + 4 \le 0\)
b) \( - {x^2} + 6x - 9 \ge 0\)
a) Ta có \(a = 3 > 0\) và tam thức bậc hai \(f\left( x \right) = 3{x^2} - 2x + 4\) có \(\Delta ' = {1^2} - 3.4 = - 11 < 0\)
=> \(f\left( x \right) = 3{x^2} - 2x + 4\) vô nghiệm.
=> \(3{x^2} - 2x + 4 > 0\forall x \in \mathbb{R}\)
b) Ta có: \(a = - 1 < 0\) và \(\Delta ' = {3^2} - \left( { - 1} \right).\left( { - 9} \right) = 0\)
=> \(f\left( x \right) = - {x^2} + 6x - 9\) có nghiệm duy nhất \(x = 3\).
=> \( - {x^2} + 6x - 9 < 0\forall x \in \mathbb{R}\backslash \left\{ 3 \right\}\)