Xác định \(\left(P\right):y=ax^2+bx+c\left(a\ne0\right)\)
biết P đi qua M(4;3), cắt Ox tại N(3;0) và P sao cho diện tích tam giác INP = 1 với xp < 3. (Gọi I là đỉnh của parabol)Xác định a, b, c biết parabol \(y=ax^2+bx+c\)
a. Đi qua 3 điểm \(A\left(0;-1\right);B\left(1;-1\right);C\left(-1;1\right)\)
b. Có đỉnh \(I\left(1;4\right)\) và đi qua điểm \(D\left(3;0\right)\)
Xác định a, b, c biết parabol \(y=ax^2+bx+c\) đi qua điểm \(A\left(8;0\right)\) và có đỉnh là \(I\left(6;-12\right)\)
Hàm số đi qua \(A\left(8;0\right)\) nên: \(a.8^2+8b+c=0\)\(\Leftrightarrow64a+8b+c=0\).
Hàm số có đỉnh là: \(I\left(6;-12\right)\) nên: \(\left\{{}\begin{matrix}\dfrac{-b}{2a}=6\\6^2.a+6b+c=-12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}12a+b=0\\36a+6b+c=-12\end{matrix}\right.\).
Vậy ta có hệ: \(\left\{{}\begin{matrix}64a+8b+c=0\\-b=12a\\36a+6b+c=-12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-36\\c=96\end{matrix}\right.\).
Vậy : \(y=-3x^2-36x+96\).
Cho hàm số \(y=f\left(x\right)=ax^2+bx+c\)
Xác định các hệ số \(a,b,c\) biết \(f\left(0\right)=1\),\(f\left(1\right)=2\),\(f\left(2\right)=4\)
Giúp mình với :3?
f(0) = 1
\(\Rightarrow\) a.02 + b.0 + c = 1
\(\Rightarrow\) c = 1
Vậy hệ số a = 0; b = 0; c = 1
f(1) = 2
\(\Rightarrow\) a.12 + b.1 + c = 2
\(\Rightarrow\) a + b + c = 2
Vậy hệ số a = 1; b = 1; c = 1
f(2) = 4
\(\Rightarrow\) a.22 + b.2 + c = 4
\(\Rightarrow\) 4a + 2b + c = 4
Vậy hệ số a = 4; b = 2; c = 1
Chúc bn học tốt! (chắc vậy :D)
Xác định hàm số bậc nhất \(y=ax+b\)với \(a\ne0\) biết \(f\left(0\right)=5\) và \(f\left(-1\right)=2\).
Ta có \(\left\{{}\begin{matrix}f\left(0\right)=5\\f\left(-1\right)=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=5\\-a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=5\\a=3\end{matrix}\right.\)
Vậy hàm số \(y=ax+b=3x+5\)
Ta có: f(0)=5
nên b=5
hay y=ax+5
Thay x=-1 và y=2 vào y=ax+5, ta được:
\(-a+5=2\)
hay a=3
Xác định parabol \(y = a{x^2} + bx + 4\) trong mỗi trường hợp sau:
a) Đi qua điểm \(M\left( {1;12} \right)\) và \(N\left( { - 3;4} \right)\)
b) Có đỉnh là \(I\left( { - 3; - 5} \right)\)
a) Thay tọa độ điểm \(M\left( {1;12} \right)\) và \(N\left( { - 3;4} \right)\) ta được:
\(\begin{array}{l}\left\{ \begin{array}{l}a{.1^2} + b.1 + 4 = 12\\a.{\left( { - 3} \right)^2} + b.\left( { - 3} \right) + 4 = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}a + b = 8\\9a - 3b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 6\end{array} \right.\end{array}\)
Vậy parabol là \(y = 2{x^2} + 6x + 4\)
b) Hoành độ đỉnh của parabol là \(x_I = \frac{{ - b}}{{2a}}\)
Suy ra \(x_I = \frac{{ - b}}{{2a}} = - 3 \Leftrightarrow b = 6a\) (1)
Thay tọa độ điểm I vào ta được:
\(\begin{array}{l} - 5 = a.{\left( { - 3} \right)^2} + b.\left( { - 3} \right) + 4\\ \Leftrightarrow 9a - 3b = - 9\\ \Leftrightarrow 3a - b = - 3\left( 2 \right)\end{array}\)
Từ (1) và (2) ta được hệ
\(\begin{array}{l}\left\{ \begin{array}{l}b = 6a\\3a - b = - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 6a\\3a - 6a = - 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = 6a\\a = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 6\\a = 1\end{array} \right.\end{array}\)
Vậy parabol là \(y = {x^2} + 6x + 4\).
Câu 1: Xác định đường thẳng đi qua 2 điểm A( 1, 3 ) và B( 3, -1 )
Câu 2: Xác định a, b qua đa thức:
\(f\left(x\right)=x^3-ax^2+bx-a\)
biết \(f\left(x\right)⋮\left(x-1\right)\)và \(f\left(x\right)⋮\left(x-3\right)\)
Câu 2 : \(f\left(x\right)=x^3-ax^2+bx-a\)
Áp dụng định lý Bezout ta có:
\(f\left(x\right)⋮\left(x-1\right)\)\(\Rightarrow f\left(1\right)=0\)
\(\Rightarrow1^3-a.1^2+b.1-a=1-a+b-a=0\)
\(\Leftrightarrow1-2a+b=0\)\(\Leftrightarrow2a-b=1\)(1)
\(\Rightarrow3\left(2a-b\right)=3\)\(\Rightarrow6a-3b=3\)(2)
\(f\left(x\right)⋮\left(x-3\right)\)\(\Rightarrow f\left(3\right)=0\)
\(\Rightarrow3^3-a.3^2+3b-a=27-9a+3b-a=0\)
\(\Leftrightarrow27-10a+3b=0\)\(\Leftrightarrow10a-3b=27\)(3)
Từ (2) và (3)
\(\Rightarrow\left(10a-3b\right)-\left(6a-3b\right)=27-3\)
\(\Leftrightarrow10a-3b-6a+3b=24\)
\(\Leftrightarrow4a=24\)\(\Leftrightarrow a=6\)
Thay \(a=6\)vào (1) ta có:
\(2.6-b=1\)\(\Leftrightarrow12-b=1\)\(\Leftrightarrow b=11\)
Vậy \(a=6\)và \(b=11\)
Xác định parabol \(y=ax^2+bx+2\), biết rằng parabol đó :
a. Đi qua hai điểm \(M\left(1;5\right)\) và \(N\left(-2;8\right)\)
b. Đi qua điểm \(A\left(3;-4\right)\) và có trục đối xứng là \(x=-\dfrac{3}{2}\)
c. Có đỉnh là \(I\left(2;-2\right)\)
d. Đi qua điểm \(B\left(-1;6\right)\) và tung độ của đỉnh là \(-\dfrac{1}{4}\)
a) Vì parabol đi qua M(1; 5) nên tọa độ của M nghiệm đúng phương trình của parabol: 5 = a.12 + b.1 + 2.
Tương tự, với N(- 2; 8) ta có: 8 = a.(- 2)2 + b.(- 2) + 2
Giải hệ phương trình: ta được a = 2, b = 1.
Parabol có phương trình là: y = 2x2 + x + 2.
b) Giải hệ phương trình:
Parabol: y = x2 - x + 2.
c) Giải hệ phương trình:
Parabol: y = x2 - 4x + 2.
d) Ta có:
Parabol: y = 16x2 + 12x + 2 hoặc y = x2 - 3x + 2.
Cho tam thức \(f\left(x\right)=ax^2+bx+c\left(a\ne0\right),\Delta=b^2-4ac\)
Ta có: \(f\left(x\right)\le0.với.\forall x\in R\) khi và chỉ khi?
Giải thích rõ giúp em với ạ, em không hiểu cách xác định dấu:(
\(\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta\le0\end{matrix}\right.\)
Quy tắc: tam thức bậc 2 ko đổi dấu khi \(\Delta< 0\) (có dấu = hay ko phụ thuộc đề yêu cầu \(f\left(x\right)\) có dấu = hay ko)
Khi đã có \(\Delta< 0\) thì dấu \(f\left(x\right)\) chỉ còn phụ thuộc a. Nếu a dương thì \(f\left(x\right)\) dương trên R, nếu a âm thì \(f\left(x\right)\) âm trên R.
Xác định \(\left(P\right)\) : \(y=ax^2+bx+c\) biết đỉnh \(I\left(-1;5\right)\) và \(\left(P\right)\) đi qua \(A\left(1;1\right)\)
Lời giải:
Để ĐTHS có đỉnh $I$ thì $a< 0$
Tọa độ đỉnh $I$:
\(x_I=\frac{-b}{2a}=-1\Rightarrow b=2a(1)\)
Điểm $I$ thuộc ĐTHS $y$ nên:
\(y_I=y(x_I)\Leftrightarrow 5=a(-1)^2+b(-1)+c\Leftrightarrow 5=a-b+c(2)\)
ĐTHS đi qua điểm $A(1;1)$
$\Leftrightarrow y_A=y(x_A)$
$\Leftrightarrow 1=a.1^2+b.1+c=a+b+c(3)$
Từ $(1);(2); (3)\Rightarrow a=-1; b=-2; c=4$
Lời giải:
Để ĐTHS có đỉnh $I$ thì $a< 0$
Tọa độ đỉnh $I$:
\(x_I=\frac{-b}{2a}=-1\Rightarrow b=2a(1)\)
Điểm $I$ thuộc ĐTHS $y$ nên:
\(y_I=y(x_I)\Leftrightarrow 5=a(-1)^2+b(-1)+c\Leftrightarrow 5=a-b+c(2)\)
ĐTHS đi qua điểm $A(1;1)$
$\Leftrightarrow y_A=y(x_A)$
$\Leftrightarrow 1=a.1^2+b.1+c=a+b+c(3)$
Từ $(1);(2); (3)\Rightarrow a=-1; b=-2; c=4$