cho tam giác ABC AM là trung tuyến. phân giác của góc AMB cắt AB tại E; phân giác của AMC cắt AC tại F biết ME = MF. chứng minh tam giác ABC cân
Cho tam giác ABC có AM là đường trung tuyến. Tia phân giác của góc AMB cắt
AB tại E, tia phân giác của góc AMC cắt AC ở F. Biết ME= MF. Chứng minh ABC là tam
giác cân.
Cho tam giác ABC cân tại A có AM là đường trung tuyến. Tia phân giác của góc
AMB cắt AB tại E, tia phân giác của góc AMC cắt AC ở F. Chứng minh ME= MF.
áp dụng t/c đường phân giác vào tam giác AMB có :
\(\dfrac{ME}{AB}=\dfrac{AM}{MB}\left(1\right)\)
áp dụng t/c đường phân giác vào tam giác AMC có :
\(\dfrac{MF}{AC}=\dfrac{AM}{MC}\left(2\right)\)
mà AB = AC ; MB=MC
từ (1) và (2) suy ra : ME= MF (đpcm)
Ta có
\(\widehat{AME}=\widehat{EMB}\left(vì.ME.là.p/giác.\widehat{AMB}\right)\)
\(\widehat{AMF}=\widehat{FMC}\left(vì.MF.là.p/giác\widehat{AMC}\right)\)
\(\Rightarrow\widehat{EMB}=\widehat{FMC}\)
Xét \(\Delta EMB.và.\Delta FMC\)
MB = MC ( vì AM là trung tuyến )
\(\widehat{B}=\widehat{C}\)
\(\widehat{EMB}=\widehat{FMC}\left(cmt\right)\)
Vậy .........
=> ME = MF(2 cạnh tương ứng)
Cho tam giác ABC và đường trung tuyến AM. Tia phân giác của góc AMB cắt AB tại D, tia phân giác góc AMC cắt AC tại E. Chứng minh DE//BC và tam giác ADE đồng dạng với tam giác ABC
Xet ΔMAB có MD là phân giác
nên AD/DB=AM/MB=AM/MC
Xét ΔMAC có ME là phân giác
nên AE/EC=AM/MC
=>AD/DB=AE/EC
=>DE//BC
=>ΔADE đồng dạng với ΔABC
Cho tam giác ABC đường trung tuyến AM.Tia phân giác của góc AMB cắt đoạn AB tại D.Tia phân giác của góc AMC cắt đoạn AC tại E Gọi I là giao điểm của AM và DE.Chứng minh I là trung điểm của DE.
Xét ΔAMB có MD là phân giác
nên AD/DB=AM/MB=AM/MC(1)
Xét ΔAMC có ME là phân giác
nên AE/EC=AM/MC(2)
Từ (1) và (2) suy ra AD/DB=AE/EC
hay DE//BC
Xét ΔABM có DI//BM
nên DI/BM=AD/AB(3)
Xét ΔACM cóIE//MC
nên IE/MC=AE/AC
hay IE/BM=AE/AC(4)
Xét ΔABC có DE//BC
nên AD/AB=AE/AC(5)
Từ (3), (4) và (5) suy ra DI=EI
hay I là trung điểm của DE
cho tam giác ABC ,và trung tuyến AM .Phân giác ME của góc AMB cắt AB tại E phân giác MF của góc AMC cắt AC tại F
a, chứng minh EF//BC
b, gọi K là giao điểm của EF và AM,chứng minh I thuộc đường thẳng AM
Cho tam giác \(ABC\) có đường trung tuyến \(AM\). Đường phân giác của góc \(AMB\) cắt \(AB\) tại \(D\) và đường phần giác góc \(AMC\) cắt \(AC\) tại \(E\) (Hình 8). Chứng minh \(DE//BC\).
Vì \(MD\) là tia phân giác của góc \(\widehat {AMB}\) nên \(\frac{{AD}}{{DB}} = \frac{{AM}}{{BM}}\) (1)
Vì \(ME\) là tia phân giác của góc \(\widehat {AMC}\) nên \(\frac{{AE}}{{EC}} = \frac{{AM}}{{MC}}\)(2);
Mà \(M\) là trung điểm của \(BC\) nên \(BM = MC\) (3)
Từ (1); (2); (3) \( \Rightarrow \frac{{AD}}{{BD}} = \frac{{AE}}{{EC}}\)
Xét tam giác \(ABC\) có: \(\frac{{AD}}{{BD}} = \frac{{AE}}{{EC}}\)
Do đó, \(DE//BC\)(Định lí Thales đảo).
Xét ΔMAB có MD là phân giác
nên AD/DB=AM/MB=AM/MC
Xét ΔAMC có ME là phân giác
nên AE/EC=AM/MC
=>AD/DB=AE/EC
=>DE//BC
Cho tam giác ABC có trung tuyến AM. Tia phân giác của góc AMB cắt AB tại E, tia phân giác của góc AMC
cắt AC tại D. Gọi I là giao điểm của AM và ED.
a) Chứng minh I là trung điểm ED. b) Cho BC=16cm,CD/DA = 3/5. Tính ED
ét ô ét.-.
Cho TAm giác ABC có AM là đường Trung tuyến(M thuộc BC). Tia phân giác của Góc AMB cắt AB tại D. Tia phân giác của Góc AMC cắt AC tại E
a)Tính AD/BD biết AM=6,BC=10
b)CM BM/AM=CE/AE
c) CM : DE song song với BC
a) \(BM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)
Tam giác ABM có MD là p/giác
\(\Rightarrow\dfrac{AD}{BD}=\dfrac{AM}{BM}=\dfrac{6}{5}\)
b) Tam giác AMC có ME là p/giác
\(\Rightarrow\dfrac{MC}{AM}=\dfrac{EC}{AE}\)
Mà: MC = BM (GT)
\(\Rightarrow\dfrac{BM}{AM}=\dfrac{EC}{AE}\)
c) Có: \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\left(cmt\right)\) (1)
Tam giác AMC có ME là p/giác
\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{MC}\)
Mà: BM = MC (GT)
\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{BM}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{AD}{BD}=\dfrac{AE}{EC}\)
=> DE // BC
a) Ta có: M là trung điểm của BC(gt)
nên \(MB=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Xét ΔAMB có MD là đường phân giác ứng với cạnh AB(Gt)
nên \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{BD}=\dfrac{6}{5}\)
Cho tam giác ABC, trung tuyến AM. Tia phân giác của góc AMB cắt AB ở E, tia phân giác góc AMC cắt AC ở F, biết ME=MF. CM: tam giác ABC cân