Cho tam giác ABC, đg trung tuyến AM.Đường phân giác của góc AMB cắt cạnh AB ở D, đg phân giác của góc AMC cắt cạnh AC ở E.
a, CM:DE//BC
b, Gọi I là giao điểm của DE vs AM. Chứng minh ID=IE
GIÚP MK CÂU b, CÂU A MK TỰ LÀM ĐC
TKS
Câu 1: Cho tam giác ABC có trung tuyến AM. Tia phân giác của góc AMB cắt cạnh AB ở D, tia phân giác của góc AMC cắt cạnh AC ở E.
a. Chứng minh DE // BC.
b. Gọi G là giao điểm của AM với DE. Chứng minh G là trung điểm của DE. Tìm điều kiện của tam giác ABC để G là trung điểm của AM.
c. Gọi AN là phân giác của BAC, (N thuộc BC). Biết AB = 12cm, AC = 16cm, BC = 20cm. Tính diện tích tam giác AMN.
Giúp mình đi cầu xin mấy bạn đó
cho tam giác ABC vuông tại A(AB<AC),đường trung tuyến AM.Qua M kẻ đường thẳng vuông góc với AM cắt AB tại E và cắt AC tại F.Kẻ AH vuông góc với BC,AH cắt EF tại I.Cm
a)góc BAM=góc ABM
b)góc ACB=góc AEF=>tam giác MBE đồng dạng với tam giác MFC
c)AB.AE=AC.AF
Cho tam giác ABC vuông tại A biết AM = 6 cm , AC=8cm đường cao AH. Gọi DE lần lượt là chân đường vuông góc kẻ từ H đến AB và AC .
a, Tính diện tích tam giác ABC
b, Chứng minh : AM=DE
c,Kẻ trung tuyến AM của tam giác ABC. Chứng minh : AM vuông góc DE
Cho tam giác ABC nhọn có ba đường cao AD, BE và CF cắt nhau tại H
a) Chứng minh rằng: tam giác ABE đồng dạng tam giác ACF và AE.AC = AF.AB
b) Chứng minh rằng: BH.BE = BD.BC
c) Gọi N là giao điểm của EF và AD. Chứng minh rằng FC là tia phân giác của góc DEF, rồi suy ra: NH.AD = AN.HD.
mọi người giúp em giải câu c thôi ạ
tam giác ABC vuông tại A , M là điểm trên BC . MD là đường thẳng kẻ từ M đền AB .ME vuông góc với AC . Gọi O là trung điểm của AM Chứng minh D và E đối xứng qua O . Tứ giác BDEC có 2 góc đối bù nhau nếu AM vuông góc với DC . Xác định vị trí điểm M trên BC để 2AM+3DE đạt giá trị nhỏ nhất Gọi AH là đường cao , AK là đường trung tuyến . Kẻ Hi vuông góc với AB , AC vuông góc với HF . cm Ak vuông góc với IF Cm góc DHF bằng 90 độ
Cho △ABC vuông tại A (AB>AC) AM là đường trung tuyến . Kẻ đường thẳng vuông góc với AM tại M lần lược cắt AB tại E , cắt AC tại F a. Chứng minh △MBE ∼ △MFC b. Chứng minh AE . AB = AC . AF c. Đường cao AH của △ABC cắt EF tại I Chứng minh \(\dfrac{S_{ABC}}{S_{AEF}}=\left(\dfrac{AM}{AI}\right)^2\)
Cho ABC vuông tại A (AB > AC). AM là đường trung tuyến. Kẻ đường thẳng vuông góc với AM tại M lần lượt cắt AB tại E, cắt AC tại F. a. Chứng minh tam giác MBE đồng dạng tam giác MFC
b. Chứng minh AE. AB = AC. AF
c. Đường cao AH của tam giác ABC cắt EF tại I.
Cho tam giác ABC vuông tại A (AB<AC). Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N. Gọi D là điểm đối xứng của I qua N.
a) Tứ giác ADCI là hình gì?
b) Đường thẳng BN cắt DC tại K. Chứng minh rằng DK/DC=1/3
c) Cho AB=12cm, BC=20cm. tính diện tích hình ADCI.