Cho phương trình : x² - 2( m-1)x - 2m=0(I) a. Chứng tỏ rằng phương trình (I) luôn có hai nghiệm phân biệt với mọi giá trị m b. Tính X1 + X2 ; X1.X, theo m c. Tìm m để x1² + x2² = 4
Cho phương trình : x - 2( m-1)x - 2m=0 (I) a. Chúng tỏ rằng phương trình (I) luôn có hai nghiệm phân biệt với mọi giá trị m b. Tính Xi + X ; XI.X, theo m c. Tìm m để 2 X1² + x2² = 4
a: Δ=(2m-2)^2-4*(-2m)
=4m^2-8m+4+8m=4m^2+4>0
=>Phương trình luôn có hai ngiệm phân biệt
b: x1+x2=2m-2; x1x2=-2m
cho phương trình ẩn x : x^2 +2(m+3)x. 2m-11 (1)
a/ chứng tỏ phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị của m
b/ Tìm giá trị của m để phương trình (1) có hai nghiệm x1 ,x2 thỏa mãn hệ thức 1/x1+1/x2=2
Cho phương trình x2 + 2 ( m + 3 )x + 2m - 11
a) Ta có:
△' = b'2 - ac = ( m + 3 )2 - 1 . ( 2m - 11 )
m2 - 6m + 9 - 2m + 11
△' = b'2 - ac =
Cho phương trình bậc hai: x2 – 2mx + 2m – 5 = 0 ( m: tham số ) (1)
a/ Chứng tỏ rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m.
b/ Gọi x1, x2 là nghiệm của phương trình (1). Tìm m để ( x1 – x2 )2 = 32
a: \(\text{Δ }=\left(-2m\right)^2-4\left(2m-5\right)=4m^2-8m+20\)
\(=4m^2-8m+4+16=\left(2m-2\right)^2+16>0\)
=>(1) luôn có hai nghiệm phân biệt
b: (x1-x2)^2=32
=>(x1+x2)^2-4x1x2=32
=>\(\left(2m\right)^2-4\left(2m-5\right)=32\)
=>4m^2-8m+20-32=0
=>4m^2-8m-12=0
=>m^2-2m-3=0
=>m=3 hoặc m=-1
Bài 4:Cho phương trình ẩn x: x2 - (m + 3)x + m = 0
a) Chứng minh rằng với mọi giá trị của m phương trình (1) luôn có 2 nghiệm phân biệt.
b) Tìm m để phương trình có 2 nghiệm Phân biệt x1, x2 thỏa mãn hệ thức:
x12 + x22 = 6
a) \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\\ =m^2+6m+9-4m\\ =m^2+2m+9\\ =\left(m+1\right)^2+8>0\forall m\)
Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m.
b) Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1x_2=m\end{matrix}\right.\)
Mà \(x_1^2+x_2^2=6\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\\ \Leftrightarrow\left(m+3\right)^2-2m=6\\ \Leftrightarrow m^2+6m+9-2m=6\\ \Leftrightarrow m^2+4m+3=0\\ \Leftrightarrow\left(m+1\right)\left(m+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)
Vậy \(m\in\left\{-1;-3\right\}\) là các giá trị cần tìm.
a, Ta có: \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\)
\(=m^2+6m+9-4m\)
\(=m^2+2m+9\)
\(=m^2+2m+1+8\)
\(=\left(m+1\right)^2+8\)
Lại có: \(\left(m+1\right)^2\ge0\forall m\Rightarrow\left(m+1\right)^2+8\ge8\forall m\)
Vậy phương trình luôn có 2 nghiêm phân biệt
b, Theo hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1+x_2=m\end{matrix}\right.\)
Theo bài ra:
\(x_1^2+x_2^2=6\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)
\(\Leftrightarrow\left(m+3\right)^2-2m=6\)
\(\Leftrightarrow m^2+6m+9-2m=6\)
\(\Leftrightarrow m^2+6m+9-2m-6=0\)
\(\Leftrightarrow m^2+4m+3=0\)
\(\Leftrightarrow m^2+m+3m+3=0\)
\(\Leftrightarrow\left(m^2+m\right)+\left(3m+3\right)=0\)
\(\Leftrightarrow m\left(m+1\right)+3\left(m+1\right)=0\)
\(\Leftrightarrow\left(m+1\right)\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\m+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)
Vậy với m=-1 hoặc m=-3 thì phương trinh trên thỏa mãn hệ thức
PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?
PT cuối cũng bị lỗi.
Bạn xem lại đề!
Lời giải:
a)
Ta có: $\Delta'=m^2-(2m-2)=m^2-2m+2=(m-1)^2+1>0$ với mọi $m\in\mathbb{R}$
Do đó pt luôn có 2 nghiệm phân biệt $x_1,x_2$ với mọi $m\in\mathbb{R}$
b)
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-2m\\ x_1x_2=2m-2\end{matrix}\right.\)
Để $x_1^2+x_2^2-3x_1x_2=4$
$\Leftrightarrow (x_1+x_2)^2-5x_1x_2=4$
$\Leftrightarrow (-2m)^2-5(2m-2)=4$
$\Leftrightarrow 4m^2-10m+6=0$
$\Leftrightarrow 2m^2-5m+3=0$
$\Leftrightarrow (m-1)(2m-3)=0$
$\Rightarrow m=1$ hoặc $m=\frac{3}{2}$ (đều thỏa mãn)
Cho phương trình x2 -2.(m-1) x+2m - 5 = 0 (1) với m là tham số.
a) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1, x2
b) Tìm các giá trị của m để ( x12 - 2mx1 +2m - 1) (x2 -2 ) \(\le\) 0
a) Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(2m-5\right)\)
\(=\left(2m-2\right)^2-4\left(2m-5\right)\)
\(=4m^2-8m+4-8m+20\)
\(=4m^2-16m+24\)
\(=4m^2-2\cdot2m\cdot4+16+8\)
\(=\left(2m-4\right)^2+8>0\forall m\)
Vậy: Phương trình (1) luôn có hai nghiệm phân biệt \(x_1;x_2\)
Bài 3 (2,5 điểm)
Cho phương trình -x+(2m - 1)x + m – m^2 =0 (1) (với m là tham số).
a) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt. Tìm hai nghiệm đó khi m = 2.
b) Tìm tất cả các giá trị của m sao cho x1 (1-2x2)+x2(1-2x1)= mo, với x1 và x2, là hai nghiệm của phương trình (1).
c) Với X1 và X2 là hai nghiệm của phương trình (1), chứng minh rằng với mọi giá trị của m ta luôn có x1 - 2x1x2 + x2 < hoặc =1
Mong các bạn giúp mik!
a: Δ=(2m-1)^2-4*(-1)(m-m^2)
=4m^2-4m+1+4m-4m^2=1>0
=>(1) luôn có hai nghiệm phân biệt
b: m=x1-2x1x2+x2-2x1x2
=x1+x2-4x1x2
=2m-1+4(m-m^2)
=>m-2m+1-4m+4m^2=0
=>4m^2-5m+1=0
=>m=1 hoặc m=1/4
c: x1+x2-2x1x2
=2m-1+2m-2m^2=-2m^2+4m-1
=-2m^2+4m-2+1
=-2(m-1)^2+1<=1
Cho phương trình X^2 - 2(m + 1)x + m - 6 = 0 (1) , ( với m là tham số )
a> Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1; x2 với mọi giá trị của m
b> Tìm một hệ thức liên hệ giữa x1 ; x2 không phụ thuộc vào m
c> với giá trị nào của m thì phương trình (1) có ít nhất một nghiệm dương
a: Δ=(2m+2)^2-4(m-6)
=4m^2+8m+4-4m+24
=4m^2+4m+28
=(2m+1)^2+27>0
=>Phương trình luôn có hai nghiệm phân biệt
c: Để (1) có ít nhất 1 nghiệm dương thì
m-6<0 hoặc (2m+2>0 và m-6>0)
=>m>6 hoặc m<6
Cho phương trình x 2 – (m + 1)x + m = 0 (với m là tham số). a) Chứng tỏ phương trình trên luôn có nghiệm với mọi giá trị m. b) Gọi x1, x2 là hai nghiệm của phương trình. Tìm m để phương trình có hai nghiệmthỏa: x12+x22=(x1 − 1) (x2 − 1) + 2