Bài 4:
Câu 4.1
A=\(\dfrac{1}{\sqrt{2}-1}-\dfrac{1}{\sqrt{2}+1}\)
A=\(\dfrac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}-\dfrac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}\)
A=\(\dfrac{\sqrt{2}+1}{1}-\dfrac{\sqrt{2}-1}{1}\)
A=\(\sqrt{2}+1-\left(\sqrt{2}-1\right)\)
A=\(\sqrt{2}+1-\sqrt{2}+1\)
A=2
B=\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{4-2\sqrt{3}}\)
B=\(\left|\sqrt{3}-2\right|+\sqrt{3-2\sqrt{3}+1}\)
B=\(-\left(\sqrt{3}-2\right)+\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1^2}\)
B=\(-\sqrt{3}+2+\sqrt{\left(\sqrt{3}-1\right)^2}\)
B=\(-\sqrt{3}+2+\left|\sqrt{3}-1\right|\)
B=\(-\sqrt{3}+2+\left(\sqrt{3}-1\right)\)
B=\(-\sqrt{3}+2+\sqrt{3}-1\)
B=1
Câu 4.2
a, ĐK: x>0; x\(\ne1\)
C=\(\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)
C=\(\dfrac{x}{\sqrt{x}-1}-\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
C=\(\dfrac{x}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\)
C=\(\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)
C=\(\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\)
C=\(\sqrt{x}-1\)
b, Thay x=\(6+2\sqrt{5}\) vào biểu thức trên ta được:
C=\(\sqrt{6+2\sqrt{5}}-1\)
C=\(\sqrt{5+2\sqrt{5}+1}-1\)
C=\(\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}+1^2}-1\)
C=\(\sqrt{\left(\sqrt{5}+1\right)^2}-1\)
C=\(\left|\sqrt{5}+1\right|-1\)
C=\(\sqrt{5}+1-1\)
C=\(\sqrt{5}\)