Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 2 2019 lúc 10:14

Đáp án là C

Tan Nguyen
Xem chi tiết
LONG
Xem chi tiết
Trần Minh Hoàng
31 tháng 5 2021 lúc 17:13

Ta có \(\widehat{BEC}=\widehat{BFC}=90^o\) nên tứ giác BCEF nội tiếp đường tròn đường kính BC. Tâm I của đường tròn này là trung điểm của BC

Đỗ’s Dũng’s
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 2 2021 lúc 22:30

a) Xét tứ giác AEHF có 

\(\widehat{HFA}\) và \(\widehat{HEA}\) là hai góc đối

\(\widehat{HFA}+\widehat{HEA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Ngat Nguyen
30 tháng 7 2021 lúc 11:51

Ngat Nguyen
30 tháng 7 2021 lúc 11:54

undefined

Đức Hạnh
Xem chi tiết
Đức Hạnh
9 tháng 5 2021 lúc 18:28

giúp mình câu b với các bạn ơi

 

katori mekirin
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 2 2023 lúc 14:46

a: Xét tứ giác AEHF có

góc AEH+góc AFH=180 độ

=>AEHF là tứ giác nội tiếp

Xét tứ giác BEFC có

góc BEC=góc BFC=90 độ

=>BEFC là tứ giác nội tiếp

b: Kẻ tiếp tuyến Ax

góc xAC=góc ABC(=1/2*sđ cung BC)

góc ABC=góc AFE

=>góc xAC=góc AFE

=>Ax//EF

=>EF vuông góc OA

Xét (O) có

ΔACK nội tiếp

AK là đường kinh

=>ΔACK vuông tại C

Xét tứ giác IFCK có

góc FCK+góc FIK=180 độ

=>IFCK là tứ giác nội tiếp

nguyển thị thảo
Xem chi tiết
Tuấn Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 3 2023 lúc 21:00

a: góc AEB=góc ADB=90 độ

=>ABDE nội tiếp

b: góc CBK=1/2*180=90 độ

Xet ΔCBK vuông tại B và ΔCFA vuông tại F có

góc BCK=góc FCA

=>ΔCBK đồng dạng vơi ΔCFA

=>CB/CF=CK/CA

=>CB*CA=CF*CK

Hien Thu
Xem chi tiết
Tô Mì
3 tháng 5 2023 lúc 14:32

a) \(BE,CF\) là đường cao của \(\Delta ABC\Rightarrow\hat{BFC}=\hat{BEC}=90^o\).

Mà trong tứ giác \(BFEC\), hai góc này có đỉnh kề nhau và cùng nhìn cạnh \(BC\).

Vậy : Tứ giác \(BFEC\) nội tiếp được một đường tròn (dấu hiệu nhận biết) (đpcm).

b) Ta có : \(\hat{ABD}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AB\perp BD.\)

Mà : \(\hat{BFC}=90^o\left(cmt\right)\Rightarrow AB\perp CF.\)

Từ đó suy ra : \(BD\left|\right|CF\Rightarrow BFCD\) là hình thang.

Mà : \(\hat{BFC}=\hat{ABD}=90^o\left(cmt\right)\Rightarrow BFCD\) là hình thang vuông.

c) Ta có : \(CF\left|\right|BD\left(cmt\right)\) hay \(CH\left|\right|BD\left(1\right).\)

Mặt khác : \(\hat{ACD}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AC\perp CD\).

Và : \(BE\perp AC\left(gt\right)\)

Suy ra được : \(CD\left|\right|BE\) hay \(CD\left|\right|BH\left(2\right).\)

Từ \(\left(1\right),\left(2\right)\Rightarrow BHCD\) là hình bình hành.

Ta cũng có : \(M\) là trung điểm của \(BC\left(gt\right)\Rightarrow M\) cũng là trung điểm của \(HD\left(3\right).\)

Lại có \(O\) là trung điểm của \(AD\left(4\right)\) (tâm đường tròn).

Từ \(\left(3\right),\left(4\right)\Rightarrow OM\) là đường trung bình của \(\Delta HAD\Rightarrow OM=\dfrac{1}{2}AH\Leftrightarrow AH=2.OM\) (đpcm).

d) Cho \(I\) là giao điểm của \(OA\) và \(EF\).

Ta có : \(\hat{ACB}=\hat{ADB}\) (hai góc nội tiếp cùng chắn \(\stackrel\frown{AB}\)).

Hay : \(\hat{ACB}=\hat{BDI}\left(5\right).\)

Mặt khác : Tứ giác \(BFEC\) nội tiếp được một đường tròn (cmt) nên \(\hat{AFI}=\hat{ECB}\) (cùng bù với \(\hat{BFE}\)) hay \(\hat{AFI}=\hat{ACB}\left(6\right).\)

Từ \(\left(5\right),\left(6\right)\Rightarrow\hat{AFI}=\hat{BDI}\) hay \(\hat{AFI}=\hat{ADB}.\)

\(\Delta ABD:\hat{BAD}+\hat{ADB}=90^o\) (hai góc phụ nhau)

\(\Rightarrow\hat{FAI}+\hat{AFI}=90^o.\)

\(\Delta AFI:\hat{FAI}+\hat{AFI}+\hat{AIF}=180^o\) (tổng ba góc trong một tam giác)

\(\Leftrightarrow\hat{AIF}=180^o-\left(\hat{FAI}+\hat{AFI}\right)=180^o-90^o=90^o\)

\(\Rightarrow OA\perp EF\) (đpcm).

Tô Mì
3 tháng 5 2023 lúc 14:32

Tô Thị Kim Liễu
Xem chi tiết