Xét tam giác ABC; M là trung điểm của BC; N là trung điểm của AC
Trên tia AM lấy điểm E sao cho EM = MA
Trên tia BN lấy điểm F sao cho NF = NB
Chứng Minh a) Góc AMB = goc EMC
b)CE // AB
c)CE = CF
d)C là trung điểm của EF
Cho tam giác ABC. Xét các mệnh đề dạng P ⇒ Q sau
a)Nếu ABC là một tam giác đều thì ABC là một tam giác cân.
b)Nếu ABC là một tam giác đều thì ABC là một tam giác cân và có một góc bằng 60o
Hãy phát biểu các mệnh đề Q ⇒ P tương ứng và xét tính đúng sai của chúng.
a) Nếu ABC là một tam giác cân thì ABC là tam giác đều
Đây là mệnh đề sai
b) Nếu ABC là một tam giác cân và có một góc bằng 60o thì ABC là một tam giác đều
Đây là mệnh đề đúng
Cho tam giác ABC. Xét các mệnh đề P: “AB = AC”, Q: “Tam giác ABC cân”. Xét tính đúng, sai của cả hai mệnh đề trên
Cho tam giác ABC. Vẽ trực tâm H của tam giác ABC và nhận xét vị trí của nó trong các trường hợp sau:
a) Tam giác ABC nhọn;
b) Tam giác ABC vuông tại A;
c) Tam giác ABC có góc A tù.
a)
Nhận xét: H là một điểm nằm trong tam giác ABC.
b)
Nhận xét: H trùng với đỉnh A của tam giác ABC.
c)
Nhận xét: H nằm ngoài tam giác ABC.
Xét điểm O cách đều 3 đỉnh của tam giác ABC. Chứng minh rằng nếu O nằm trên một cạnh của tam giác ABC thì ABC là một tam giác vuông.
O cách đều 3 đỉnh của tam giác ABC
\( \Rightarrow \) \(OA = OB = OC\)
\( \Rightarrow \) \(\Delta OAB\) cân tại O.
Giả sử O là trung điểm BC
\( \Rightarrow \widehat {OAB} = \widehat {OBA}\)
\(\Delta OAC\) cân tại O
\( \Rightarrow \widehat {OAC} = \widehat {OCA}\)
Xét tam giác ABC có
\(\begin{array}{l}\widehat A + \widehat B + \widehat C = {180^0}\\ \Rightarrow \widehat A + \widehat {OAB} + \widehat {OAC} = {180^0}\\ \Rightarrow \widehat A + \widehat A = {180^0}\\ \Rightarrow \widehat A = {90^0}\end{array}\)
Vậy nếu O nằm trên một cạnh của tam giác ABC thì ABC là một tam giác vuông.
Cho tam giác ABC. Xét các mệnh đề:
P: “Tam giác ABC cân”.
Q: “Tam giác ABC có hai đường cao bằng nhau”.
Phát biểu mệnh đề \(P \Leftrightarrow Q\) bằng bốn cách.
4 cách phát biểu mệnh đề \(P \Leftrightarrow Q\):
“Tam giác ABC cân tương đương nó có hai đường cao bằng nhau”
“Tam giác ABC cân là điều kiện cần và đủ để nó có hai đường cao bằng nhau”
“Tam giác ABC cân khi và chỉ khi nó có hai đường cao bằng nhau”
“Tam giác ABC cân nếu và chỉ nếu nó có hai đường cao bằng nhau”
Xét tam giác ABC vuông tại C,có đường cao CJ( J thuộc AB),JC=4.8cm,AC=6cm.Tính diện tích tam giác ABC
Xét tam giác ACJ vuông tại J:
\(AC^2=CJ^2+AJ^2\left(pytago\right)\)
\(\Rightarrow AJ=\sqrt{AC^2-CJ^2}=\sqrt{6^2-4,8^2}=3,6\left(cm\right)\)
Áp dụng HTL:
\(AC^2=AJ.AB\)
\(\Rightarrow AB=\dfrac{AC^2}{AJ}=\dfrac{6^2}{3,6}=10\left(cm\right)\)
Ta có: \(S_{ABC}=\dfrac{1}{2}CJ.AB=\dfrac{1}{2}.4,8.10=24\left(cm^2\right)\)
Cho tam giác ABC. Gọi M, N thứ tự là trung điểm AB, AC
a) Xét xem tứ giác BMNC là hình gì?
b) Xét xem tam giác ABC cần có thêm đk gì để tứ giác BMNC là hình than cân
c) Trên tia đối tia MN xác định điểm E sao cho NE=NM. Xét xem tứ giác AECM là hình gì
d) Tam giác ABC cần có thêm đk gì để tứ giác AECM là hình chữ nhật; hình thoi.
Câu c đổi lại thành trên tia đối tia NM ạ
Làm chắc câu d mà Tam giác ABC cần có thêm đk gì để tứ giác AECM là hình thoi là đc nha
cho tam giác ABC,góc A=90 độ
tính góc B+C=?
có nhận xét gì về tam giác ABC và góc B,góc C
Vẽ hình
cho tam giác abc cân tại a có góc a nhọn. gọi h là trực tâm của tâm giác và góc hba=30 độ. Xét 2 khẳng định sau:
A. tam giác ABC vuông cân
B. tam giác ABC đều
giải thịch và chọn đáp án đúng
a: Vì góc A nhọn nên chắc chắn tam giác ABC không thể vuông cân
=> Loại
b: Gọi giao điểm của BH và AC là K
=> BK\(\perp\)AC tại K
Ta có: ΔABK vuông tại K
nên \(\widehat{ABK}+\widehat{BAK}=90^0\)
hay \(\widehat{BAC}=60^0\)
Xét ΔABC cân tại A có \(\widehat{BAC}=60^0\)
nên ΔABC đều
Xét các tam giác ABC cân tại A, ngoại tiếp đường tròn có bán kính r = 1. Tìm giác trị nhỏ nhất S min của diện tích tam ABC
A. S min = 2 π .
B. S min = 3 3 .
C. S min = 3 2 .
D. S min = 4.
Đáp án B
Áp dụng công thức tính diện tích tam giác S = p . r trong đó p là nửa chu vi và r là bán kính đường tròn nội tiếp tam giác
Đặt A B = A C = a , B C = b a , b > 0
Ta có: S A B C = p . r = p .1 = p = a + a + b 2 = a + b 2
Kẻ đường cao AH ta có: b 2 = a sin A 2 ⇒ S A B C = a + a sin A 2
Ta lại có S A B C = 1 2 a 2 sin A = a + a sin A 2 = a 1 + sin A 2
⇒ 1 2 a sin A = 1 + sin A 2 ⇔ a = 2 1 + sin A 2 sin A
⇒ S A B C = 2 1 + sin A 2 2 sin A 0 < A < π
Dùng M O D E 7 tìm GTNN của hàm số trên ta nhận được:
Xấp xỉ