Cho tam giác ABC. Xét các mệnh đề P: “AB = AC”, Q: “Tam giác ABC cân”. Phát biểu mệnh đề P ⇒ Q và mệnh đề đảo của nó
Cho tam giác ABC. Xét các mệnh đề dạng P ⇒ Q sau
a)Nếu ABC là một tam giác đều thì ABC là một tam giác cân.
b)Nếu ABC là một tam giác đều thì ABC là một tam giác cân và có một góc bằng 60o
Hãy phát biểu các mệnh đề Q ⇒ P tương ứng và xét tính đúng sai của chúng.
CÁC BẠN GIẢI JUP MIK VỚI !! :))
Bài 1: Xét tính đúng sai của các mệnh đề sau:
a) Phương trình có hai nghiệm phân biệt.
b) 2k là số chẵn. (k là số nguyên bất kì)
c) 211 – 1 chia hết cho 11.
Bài 2: Cho tứ giác ABDC: Xét hai mệnh đề
P: Tứ giác ABCD là hình vuông.
Q: Tứ giác ABCD là hình chữ nhật có hai đường chéo bằng vuông góc với nhau.
Hãy phát biểu mệnh đề P ↔ Q bằng hai cách khác nhau, xét tính đúng sai của các mệnh đề đó.
Bài 3: Cho mệnh đề chứa biến P(n): n2 – 1 chia hết cho 4 với n là số nguyên. Xét tính đúng sai của mệnh đề khi n = 5 và n = 2.
Bài 4: Nêu mệnh đề phủ định của các mệnh đề sau:
Bài 5: Xét tính đúng sai và nêu mệnh đề phủ định của các mệnh đề:
a) Tứ giác ABCD là hình chữ nhật.
b) 16 là số chính phương.
Bài 6: Cho tứ giác ABCD và hai mệnh đề:
P: Tổng 2 góc đối của tứ giác bằng 1800;
Q: Tứ giác nội tiếp được đường tròn.
Hãy phát biểu mệnh đề kéo theo P => Q và xét tính đúng sai của mệnh đề này.
Bài 7: Cho hai mệnh đề
P: 2k là số chẵn.
Q: k là số nguyên
Hãy phát biểu mệnh đề kéo theo và xét tính đúng sai của mệnh đề.
Bài 8: Hoàn thành mệnh đề đúng:
Tam giác ABC vuông tại A nếu và chỉ nếu ...................
- Viết lại mệnh đề dưới dạng một mệnh đề tương đương.
Bài 9: Xét tính đúng sai của các mệnh đề và viết mệnh đề phủ định của các mệnh đề.
Bài 10: Xét tính đúng sai của các suy luận sau: (mệnh đề kéo theo)
Bài 11: Phát biểu điều kiện cần và đủ để một:
Tam giác là tam giác cân.Tam giác là tam giác đều.Tam giác là tam giác vuông cân.Tam giác đồng dạng với tam giác khác cho trước.Phương trình bậc 2 có hai nghiệm phân biệt.Phương trình bậc 2 có nghiệm kép.Số tự nhiên chia hết cho 2; cho 3; cho 5; cho 6; cho 9 và cho 11.Bài 12: Chứng mình rằng: Với hai số dương a, b thì a + b ≥ 2√ab.
Bài 13: Xét tính đúng sai của mệnh đề:
Nếu một số tự nhiên chia hết cho 15 thì chia hết cho cả 3 và 5.
Bài 14: Phát biểu và chứng minh định lí sau:
a) n là số tự nhiên, n2 chia hết cho 3 thì n cũng chia hết cho 3.
b) n là số tự nhiên, n2 chia hết cho 6 thì n cũng chia hết cho cả 6; 3 và 2.
(Chứng minh bằng phản chứng)
Hãy phủ định các mệnh đề sau:
P: “ π là một số hữu tỉ”;
Q: “Tổng hai cạnh của một tam giác lớn hơn cạnh thứ ba”.
Xét tính đúng sai của các mệnh đề trên và mệnh đề phủ định của chúng.
Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của nó, Có một tam giác cân không phải là tam giác đều.
Cho a là số tự nhiên, xét các mệnh đề P : “a có tận cùng là 0”, Q: “a chia hết cho 5” Xét tính đúng sai của cả hai mệnh đề trên
Cho 2 mệnh đề: P: “Tứ giác là hình chữ nhật” và Q: “Tứ giác có hai đường chéo bằng nhau”. Hãy phát biểu và xét tính đúng sai của mệnh đề P tương đương Q?
Trong các mệnh đề sau
a. Nếu tam giác ABC thỏa mãn AB2 + AC2 = BC2 thì tam giác ABC vuông tại B.
b. Nếu một phương trình bậc hai có biệt thức không âm thì nó có nghiệm.
c. Tam giác ABC là tam giác đều khi và chỉ khi nó thỏa mãn đồng thời hai điều kiện AB = AC và góc A = 600.
d. Hình thang cân có một trục đối xứng.
Các mệnh đề đúng là:
A. a, c.
B. a, b, c.
C. b, c.
D. b, c, d.
Cho hai mệnh đề P : " 2 − 3 > − 1 " và Q : " 2 − 3 2 > ( − 1 ) 2 "
Xét tính đúng sai của các mệnh đề P ⇒ Q , Q ¯ ⇒ P ta được:
A. Mệnh đề P ⇒ Q sai, mệnh đề Q ¯ ⇒ P đúng
B. Mệnh đề P ⇒ Q đúng, mệnh đề Q ¯ ⇒ P đúng
C. Mệnh đề P ⇒ Q sai, mệnh đề Q ¯ ⇒ P sai
D. Mệnh đề P ⇒ Q đúng, mệnh đề Q ¯ ⇒ P sai