a) cho tam giác ABC . Chứng minh rằng : sin( B + C ) = sinA và cos \(\frac{A+B}{2}\) = sinC ; b) cho tam giác ABC có vector BA nhân vector BC = AB2 . Chứng minh rằng : tam giác ABC vuông ; c) chứng minh rằng : sin6a + cos6a + 3sin2acos2a = 1
cho tam giác ABC, chứng minh rằng: \(sinA+sinB-sinC=4.sin\frac{A}{2}.sin\frac{B}{2}.cos\frac{C}{2}\)
\(sinA+sinB-sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}-sinC\)
\(=2cos\frac{C}{2}.cos\frac{A-B}{2}-2sin\frac{C}{2}cos\frac{C}{2}\)
\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}-sin\frac{C}{2}\right)\)
\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}-cos\frac{A+B}{2}\right)\)
\(=4cos\frac{C}{2}sin\frac{A}{2}sin\frac{B}{2}\)
Chứng minh rằng với mọi tam giác ABC ta có:
a) \(SinA+SinB+SinC\le Cos\dfrac{A}{2}+Cos\dfrac{B}{2}+Cos\dfrac{C}{2}\)
b) \(CosA.CosB.CosC\le Sin\dfrac{A}{2}.Sin\dfrac{B}{2}.Sin\dfrac{C}{2}\)
chứng minh tam giác ABC đều
a) sin2A+sin2B+sin2C=sinA+sinB+sinC
b) sin6A + sin6B + sin 6C = 0
c) sin A + sinB + sinC = \(cos\frac{A}{2}+cos\frac{B}{2}+cos\frac{C}{2}\)
d) \(sin\frac{A}{2}.sin\frac{B}{2}.sin\frac{C}{2}=\frac{1}{8}\)
cho tam giác abc. cmr sin^3a*cos(b-c)+sin^3b*cos(c-a)+sin^3c*cos(a-b)=sina*sinb*sinc
cho tam giác abc. cmr sin^3a*cos(b-c0+sin^3b*cos(c-a)+sin^3c*cos(a-b)=sina*sinb*sinc
cho tam giác abc có 3 góc nhọn. Vẽ đường cáo AD, BE, CF cắt nhau tại H. Chứng minh:
a) \(0< cos^2A+cos^2B+cos^2C< 1\)
b)\(2< sin^2A+sin^2B+sin^2C< 3\)
c)sinA + sinB + sinC < 2( cosA + cosB + cosC)
d)sinB . cosC + sinC . cosB = sinA
e)tanA + tanB + tanC = tanA . tanB . tanC
Cho A,B,C là ba góc của một tam giác . Chứng minh rằng :
a/ sin\(\frac{A+B}{2}=cos\frac{C}{2}\)
b/ \(cos\left(A+B\right)=-cosC\)
c/ cos\(\frac{A+B}{2}\)=\(sin\frac{C}{2}\)
d/ sinA=sin(B+C)
e/ sin(A+B)=sinC
f/ cosA=-cos(B+C)
\(A+B+C=180^0\Rightarrow\frac{A+B}{2}+\frac{C}{2}=90^0\)
\(\Rightarrow sin\left(\frac{A+B}{2}\right)=cos\left(90^0-\frac{A+B}{2}\right)=cos\frac{C}{2}\)
\(cos\left(A+B\right)=-cos\left(180^0-\left(A+B\right)\right)=-cosC\)
\(cos\left(\frac{A+B}{2}\right)=sin\left(90-\frac{A+B}{2}\right)=sin\frac{C}{2}\)
\(sinA=sin\left(180^0-A\right)=sin\left(B+C\right)\)
\(sin\left(A+B\right)=sin\left(180^0-\left(A+B\right)\right)=sinC\)
\(cosA=-cos\left(180^0-A\right)=-cos\left(B+C\right)\)
cho tam giác ABC . chứng minh:
a, sin(A+B)=sinC. ; cos (A+B)=cos-C; tan ( A+B)= -tan C
b, \(sin\frac{A+B}{2}=cos\frac{C}{2}\) ; \(cos\frac{A+B}{2}=sin\frac{C}{2}\) ; tan\(\frac{A+B}{2}=cot\frac{C}{2}\)
c, tan A+tanB+tanC= tanA.tanB.tanc( tam giác không vuông)
d, sinA+sinB+sinC= \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)
e, cos A+cosB+cosC= \(1+4sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\)
f, sin2A+sin2B+sin2C= 4sinAsinBsinC
g, cos 2A+cos2B+cos2C=1-2cosAcosBcosC
\(A+B+C=180^0\Rightarrow A+B=180^0-C\)
\(\Rightarrow sin\left(A+B\right)=sin\left(180^0-C\right)=sinC\)
\(cos\left(A+B\right)=cos\left(180^0-C\right)=-cosC\)
\(tan\left(A+B\right)=tan\left(180^0-C\right)=-tanC\)
b/ \(\frac{A+B+C}{2}=90^0\Rightarrow\frac{A+B}{2}=90^0-\frac{C}{2}\)
\(\Rightarrow sin\frac{A+B}{2}=sin\left(90^0-\frac{C}{2}\right)=cos\frac{C}{2}\)
\(cos\frac{A+B}{2}=cos\left(90^0-\frac{C}{2}\right)=sin\frac{C}{2}\)
\(tan\frac{A+B}{2}=tan\left(90-\frac{C}{2}\right)=cot\frac{C}{2}\)
c/ \(A+B=180^0-C\Rightarrow tan\left(A+B\right)=-tanC\)
\(\Leftrightarrow\frac{tanA+tanB}{1-tanA.tanB}=-tanC\)
\(\Leftrightarrow tanA+tanB=-tanC+tanA.tanB.tanC\)
\(\Leftrightarrow tanA+tanB+tanC=tanA.tanB.tanC\)
d/ \(sinA+sinB+sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)
\(=2cos\frac{C}{2}.cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)
\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)\)
\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)\)
\(=4cos\frac{C}{2}.cos\frac{A}{2}.cos\frac{B}{2}\)
e/
\(cosA+cosB+cosC=2cos\frac{A+B}{2}cos\frac{A-B}{2}+1-2sin^2\frac{C}{2}\)
\(=1+2sin\frac{C}{2}.cos\frac{A-B}{2}-2sin^2\frac{C}{2}\)
\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-sin\frac{C}{2}\right)\)
\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-cos\frac{A+B}{2}\right)\)
\(=1+4sin\frac{C}{2}.sin\frac{A}{2}sin\frac{B}{2}\)
f/
\(sin2A+sin2B+sin2C=2sin\left(A+B\right).cos\left(A-B\right)+2sinC.cosC\)
\(=2sinC.cos\left(A-B\right)+2sinC.cosC\)
\(=2sinC\left(cos\left(A-B\right)+cosC\right)\)
\(=2sinC\left[cos\left(A-B\right)-cos\left(A+B\right)\right]\)
\(=4sinC.sinA.sinB\)
g/
\(cos^2A+cos^2B+cos^2C=\frac{1}{2}+\frac{1}{2}cos2A+\frac{1}{2}+\frac{1}{2}cos2B+cos^2C\)
\(=1+\frac{1}{2}\left(cos2A+cos2B\right)+cos^2C\)
\(=1+cos\left(A+B\right).cos\left(A-B\right)+cos^2C\)
\(=1-cosC.cos\left(A-B\right)+cos^2C\)
\(=1-cosC\left(cos\left(A-B\right)-cosC\right)\)
\(=1-cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]\)
\(=1-2cosC.cosA.cosB\)
Chứng minh rằng trong tam giác ABC có:
a) tanB = tan( A+C)
b) sinC = sin( A +B)
c) cos A = -cos (B+C)
a: ΔABC có góc B+góc C+góc A=180 độ
=>góc B=180 độ-góc C-góc A
=>tan B=tan(A+C)
b: ΔABC có góc C+góc B+góc A=180 độ
=>góc C=180 độ-góc B-góc A
=>sin C=sin(A+B)
c: Xét ΔABC có góc A+góc B+góc C=180 độ
=>góc A=180 độ-góc B-góc C
=>cosA=-cos(B+C)