Chương 6: CUNG VÀ GÓC LƯỢNG GIÁC. CÔNG THỨC LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thảo Hân

cho tam giác ABC . chứng minh:

a, sin(A+B)=sinC. ; cos (A+B)=cos-C; tan ( A+B)= -tan C

b, \(sin\frac{A+B}{2}=cos\frac{C}{2}\) ; \(cos\frac{A+B}{2}=sin\frac{C}{2}\) ; tan\(\frac{A+B}{2}=cot\frac{C}{2}\)

c, tan A+tanB+tanC= tanA.tanB.tanc( tam giác không vuông)

d, sinA+sinB+sinC= \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)

e, cos A+cosB+cosC= \(1+4sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\)

f, sin2A+sin2B+sin2C= 4sinAsinBsinC

g, cos 2A+cos2B+cos2C=1-2cosAcosBcosC

Nguyễn Việt Lâm
17 tháng 6 2020 lúc 0:34

\(A+B+C=180^0\Rightarrow A+B=180^0-C\)

\(\Rightarrow sin\left(A+B\right)=sin\left(180^0-C\right)=sinC\)

\(cos\left(A+B\right)=cos\left(180^0-C\right)=-cosC\)

\(tan\left(A+B\right)=tan\left(180^0-C\right)=-tanC\)

b/ \(\frac{A+B+C}{2}=90^0\Rightarrow\frac{A+B}{2}=90^0-\frac{C}{2}\)

\(\Rightarrow sin\frac{A+B}{2}=sin\left(90^0-\frac{C}{2}\right)=cos\frac{C}{2}\)

\(cos\frac{A+B}{2}=cos\left(90^0-\frac{C}{2}\right)=sin\frac{C}{2}\)

\(tan\frac{A+B}{2}=tan\left(90-\frac{C}{2}\right)=cot\frac{C}{2}\)

c/ \(A+B=180^0-C\Rightarrow tan\left(A+B\right)=-tanC\)

\(\Leftrightarrow\frac{tanA+tanB}{1-tanA.tanB}=-tanC\)

\(\Leftrightarrow tanA+tanB=-tanC+tanA.tanB.tanC\)

\(\Leftrightarrow tanA+tanB+tanC=tanA.tanB.tanC\)

Nguyễn Việt Lâm
17 tháng 6 2020 lúc 0:51

d/ \(sinA+sinB+sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)

\(=2cos\frac{C}{2}.cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)\)

\(=4cos\frac{C}{2}.cos\frac{A}{2}.cos\frac{B}{2}\)

e/

\(cosA+cosB+cosC=2cos\frac{A+B}{2}cos\frac{A-B}{2}+1-2sin^2\frac{C}{2}\)

\(=1+2sin\frac{C}{2}.cos\frac{A-B}{2}-2sin^2\frac{C}{2}\)

\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-sin\frac{C}{2}\right)\)

\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-cos\frac{A+B}{2}\right)\)

\(=1+4sin\frac{C}{2}.sin\frac{A}{2}sin\frac{B}{2}\)

Nguyễn Việt Lâm
17 tháng 6 2020 lúc 0:55

f/

\(sin2A+sin2B+sin2C=2sin\left(A+B\right).cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC.cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC\left(cos\left(A-B\right)+cosC\right)\)

\(=2sinC\left[cos\left(A-B\right)-cos\left(A+B\right)\right]\)

\(=4sinC.sinA.sinB\)

g/

\(cos^2A+cos^2B+cos^2C=\frac{1}{2}+\frac{1}{2}cos2A+\frac{1}{2}+\frac{1}{2}cos2B+cos^2C\)

\(=1+\frac{1}{2}\left(cos2A+cos2B\right)+cos^2C\)

\(=1+cos\left(A+B\right).cos\left(A-B\right)+cos^2C\)

\(=1-cosC.cos\left(A-B\right)+cos^2C\)

\(=1-cosC\left(cos\left(A-B\right)-cosC\right)\)

\(=1-cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]\)

\(=1-2cosC.cosA.cosB\)


Các câu hỏi tương tự
Linh Nguyễn
Xem chi tiết
Nguyễn Xuân Dương
Xem chi tiết
A Lan
Xem chi tiết
Karry Angel
Xem chi tiết
Hoangtrang Trương
Xem chi tiết
Nguyễn Thảo Hân
Xem chi tiết
Nguyễn Thảo Hân
Xem chi tiết
Lê Anh Ngọc
Xem chi tiết
Ichigo Hollow
Xem chi tiết