cho tam giác ABC . chứng minh:
a, sin(A+B)=sinC. ; cos (A+B)=cos-C; tan ( A+B)= -tan C
b, \(sin\frac{A+B}{2}=cos\frac{C}{2}\) ; \(cos\frac{A+B}{2}=sin\frac{C}{2}\) ; tan\(\frac{A+B}{2}=cot\frac{C}{2}\)
c, tan A+tanB+tanC= tanA.tanB.tanc( tam giác không vuông)
d, sinA+sinB+sinC= \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)
e, cos A+cosB+cosC= \(1+4sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\)
f, sin2A+sin2B+sin2C= 4sinAsinBsinC
g, cos 2A+cos2B+cos2C=1-2cosAcosBcosC
Chứng minh rằng: (Pls help me)
a, \(\frac{1}{\sin x}+\cot x=\cot\frac{x}{2}\)
b, \(\frac{1-\cos x}{\sin x}=\tan\frac{x}{2}\)
c,\(\tan\frac{x}{2}\left(\frac{1}{\cos x}+1\right)=\tan x\)
d,\(\frac{\sin2a}{2\cos a\left(1+\cos a\right)}=\tan\frac{a}{2}\)
e,\(\cot x+\tan\frac{x}{2}=\frac{1}{\sin x}\)
f,\(3-4\cos2x+\cos4x=8\sin^4x\)
g,\(\frac{1-\cos x}{\sin x}=\frac{\sin x}{1+\cos x}\)
h,\(\sin x+\cos x=\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)\)
i,\(\sin x-\cos x=\sqrt{2}\sin\left(x-\frac{\pi}{4}\right)\)
l,\(\cos x-\sin x=\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)\)
1. Tính giá trị bt lượng giác khi biết :
a. \(\cos\left(a+b\right)\cos\left(a-b\right)khi\cos a=\frac{1}{3},\cos b=\frac{1}{4}\)
b. \(\sin\left(a-b\right),\cos\left(a+b\right),\tan\left(a+b\right)khi\sin a=\frac{8}{17},\tan b=\frac{5}{12}\)và a,b là các góc nhọn.
Bài 1) Đơn giản các biểu thức sau (giả sử các biểu thức đều có nghĩa) :B= \(\sqrt{2}-\frac{1}{sin\left(x+2013\pi\right)}\cdot\sqrt{\frac{1}{1+cosx}+\frac{1}{1-cosx}}\) với \(\pi< x< 2\pi\)
Bài 2) Tính các giá trị lượng giác còn lại của góc \(\alpha\) biết:
a) \(\sin\alpha=\frac{1}{3}\)và 90 < \(\alpha\) < 180
b) \(\cos\alpha=\frac{-2}{3}\left(\pi< \text{}\alpha< \frac{3\pi}{2}\right)\)
Bài 3) a) Tính các giá trị lượng giác còn lại của góc \(\alpha\), biết sin\(\alpha\) =\(\frac{1}{5}\) và tan\(\alpha\)+cot\(\alpha\) < 0
b) Cho \(3\sin^4\alpha-cos^4\alpha=\frac{1}{2}\). Tính giá trị biểu thức A=\(2sin^4\alpha-cos\alpha\)
Bài 4) a) Cho \(\cos\alpha=\frac{2}{3}\) Tính giá trị biểu thức: A=\(\frac{tan\alpha+3cot\alpha}{tan\alpha+cot\alpha}\)
b) Cho \(\tan\alpha=3\) Tính giá trị biểu thức: B=\(\frac{sin\alpha-cos\alpha}{sin^3\alpha+3cos^3\alpha+2sin\alpha}\)
c) Cho \(\cot\alpha=\sqrt{5}\) Tính giá trị biểu thức: C=\(sin^2\alpha-sin\alpha\cdot cos\alpha+cos^2\alpha\)
Bài 5) Chứng minh các hệ thức sau:
a) \(\frac{1+sin^4\alpha-cos^4\alpha}{1-sin^6\alpha-cos^6\alpha}=\frac{2}{3cos^2\alpha}\)
b) \(\frac{sin^2\alpha\left(1+cos\alpha\right)}{cos^2\alpha\left(1+sin\alpha\right)}=\frac{sin\alpha+tan\alpha}{cos\alpha+cot\alpha}\)
c) \(\frac{tan\alpha-tan\beta}{cot\alpha-cot\beta}=tan\alpha\cdot tan\beta\)
d) \(\frac{cos^2\alpha-sin^2\alpha}{cot^2\alpha-tan^2\alpha}=sin^2\alpha\times cos^2\alpha\)
Bài 6) Cho \(cos4\alpha+2=6sin^2\alpha\) với \(\frac{\pi}{2}< \alpha< \pi\). Tính \(\tan2\alpha\)
Bài 7) Cho \(\frac{1}{tan^2\alpha}+\frac{1}{cot^2\alpha}+\frac{1}{sin^2\alpha}+\frac{1}{\cos^2\alpha}=7\). Tính \(\cos4\alpha\)
Bài 8) Chứng minh các biểu thức sau:
a) \(\sin\alpha\left(1+cos2\alpha\right)=sin2\alpha cos\alpha\)
b) \(\frac{1+sin2\alpha-cos2\alpha}{1+sin2\alpha+cos2\alpha}=tan\alpha\)
c) \(tan\alpha-\frac{1}{tan\alpha}=-\frac{2}{tan2\alpha}\)
Bài 9) Chứng minh trong mọi tam giác ABC ta đều có:
a) sinA + sinB + sinC = \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)
b) \(sin^2A+sin^2B+sin^2C=2\left(1+cosAcosBcosC\right)\)
Bài 10) Chứng minh trong mọi tam giác ABC không vuông ta đều có:
a) \(tanA+tanB+tanC=tanAtanBtanC\)
b) \(cotAcotB+cotBcotC+cotCcotA=1\)
Bài 11) Chứng minh trong mọi tam giác ABC ta đều có:
a) \(tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}=1\)
b) \(cot\frac{A}{2}+cot\frac{B}{2}+cot\frac{C}{2}=cot\frac{A}{2}cot\frac{B}{2}cot\frac{C}{2}\)
Tính giá trị biểu thức sau:
\(H=cos\left(\frac{2\pi}{7}\right)+cos\left(\frac{4\pi}{7}\right)+cos\left(\frac{6\pi}{7}\right)\)
Chứng minh đẳng thức sau:
\(sinA+sinB+sinC=4cos\left(\frac{A}{2}\right)cos\left(\frac{B}{2}\right).cos\left(\frac{C}{2}\right)\). Biết A+B+C=pi
đơn giản biểu thức:
a, \(\left(\frac{sin\alpha+tan\alpha}{cos\alpha+1}\right)^2+1\)
b, \(tan\alpha\left(\frac{1+cos^2\alpha}{sin\alpha}-sin\alpha\right)\)
c, \(\frac{cot^2\alpha-cos^2\alpha}{cot^2a}+\frac{sin\alpha.cos\alpha}{cot\alpha}\)
Rút gọn các biểu thức sau:
1) \(A=2cosx+3cosx\left(\pi-x\right)-sin\left(\frac{7\pi}{2}-x\right)+tan\left(\frac{3\pi}{2}-x\right)\)
2) \(B=2sin\left(\frac{\pi}{2}+x\right)+sin\left(5\pi-x\right)+sin\left(\frac{3\pi}{2}+x\right)+cos\left(\frac{\pi}{2}+x\right)\)
chứng minh các đẳng thức sau
a) \(\tan^2x-\sin^2x=\tan^2x.\sin^2x\)
b) \(\tan x+\cot x=\frac{1}{\sin x.\cot x}\)
c) \(\frac{1-\cos x}{\sin x}=\frac{\sin x}{1+\cos x}\)
d) \(\frac{1}{1+\tan x}+\frac{1}{1+\cot x}=1\)
e) \(\left(1-\frac{1}{\cos x}\right)\left(1+\frac{1}{\cos x}\right)+\tan^2x=0\)
chứng minh các đẳng thức sau
a) \(\cos x\cos\left(\frac{\pi}{3}-x\right)\cos\left(\frac{\pi}{3}+x\right)=\frac{1}{4}\cos3x\)
b) \(\sin5x-2\sin x\left(\cos4x+\cos2x\right)=\sin x\)