a: ΔABC có góc B+góc C+góc A=180 độ
=>góc B=180 độ-góc C-góc A
=>tan B=tan(A+C)
b: ΔABC có góc C+góc B+góc A=180 độ
=>góc C=180 độ-góc B-góc A
=>sin C=sin(A+B)
c: Xét ΔABC có góc A+góc B+góc C=180 độ
=>góc A=180 độ-góc B-góc C
=>cosA=-cos(B+C)
a: ΔABC có góc B+góc C+góc A=180 độ
=>góc B=180 độ-góc C-góc A
=>tan B=tan(A+C)
b: ΔABC có góc C+góc B+góc A=180 độ
=>góc C=180 độ-góc B-góc A
=>sin C=sin(A+B)
c: Xét ΔABC có góc A+góc B+góc C=180 độ
=>góc A=180 độ-góc B-góc C
=>cosA=-cos(B+C)
Chứng minh rằng trong tam giác ABC có:
a) sin A = sin(B + C) ; b) cos A = -cos(B + C)
Cho tam giác ABC. Chứng minh \(\dfrac{\sin^3\dfrac{B}{2}}{\cos\left(\dfrac{A+C}{2}\right)}\)+ \(\dfrac{\cos^3\dfrac{B}{2}}{sin\left(\dfrac{A+C}{2}\right)}\)-\(\dfrac{\cos\left(A-C\right)}{\sin B}\).\(\tan B=2\)
Tam giác ABC có sin A = sin B + sin C c o s B + cos C . Chứng minh tam giác ABC vuông.
Chứng minh rằng trong △ABC có
a) cot A + cot ( B +C) = 0
b) sin A = - sin ( 2A + B +C)
c) cos C = - cos ( A + B + 2C)
Cho A, B, C là 3 góc trong tam giác. Chứng minh rằng:
1, sin A + sin B - sin C = 4sin\(\dfrac{A}{2}\) sin \(\dfrac{B}{2}\)sin \(\dfrac{C}{2}\)
2, \(\dfrac{sinA+sinB-sinC}{cosA+cosB-cosC+1}=tan\dfrac{A}{2}tan\dfrac{B}{2}tan\dfrac{C}{2}\) (ΔABC nhọn)
3, \(\dfrac{cosA+cosB+cosC+3}{sinA+sinB+sinC}=tan\dfrac{A}{2}+tan\dfrac{B}{2}+tan\dfrac{C}{2}\)
GIÚP MÌNH VỚI!!!
Cho tam giác ABC có \(\frac{\sin B+2018\sin C}{2018\cos B+\cos C}=\sin A\)và độ dài các cạnh là các số tự nhiên. Gọi M là trung điểm của cạnh BC và G là trọng tâm tam giác ABC. Chứng minh rằng tam giác MBG có diện tích là một số tự nhiên
LÀM HỘ MK NHA!!!
THANKS!!!
Cho tam giác ABC thỏa mãn hệ thức b + c = 2a. Trong các mệnh đề sau, mệnh đề nào đúng?
A. CosB + Cos C = 2 Cos A B. Sin B + Sin C = 2 Sin A
C. Sin B + Sin C = \(\dfrac{1}{2}SinA\) D. Sin B + Sin C = 2 Sin A
cho tam giác ABC có sin A+ sin B + sin C = a + b nhân cos A/2 nhân cos B/2 nhân cos C/2. khi đó tổng a+b = ?
(m.n ơi giúp mk vs mk cần gấp mk cảm ơn nhiều)
Cho tam giác ABC. Chứng minh:
\(\frac{a^2-b^2}{\cos A+\cos B}+\frac{b^2-c^2}{\cos B+\cos C}+\frac{c^2-a^2}{\cos C+\cos A}=0\)