Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thị Phương
Xem chi tiết
Akai Haruma
15 tháng 8 2021 lúc 1:36

Lời giải:
Xét hai vecto bất kỳ  \(\overrightarrow{AB}, \overrightarrow{CD}\). Kẻ vecto $\overrightarrow{CT}$ sao cho $\overrightarrow{CT}=\overrightarrow{BA}$

Ta có:

\(|\overrightarrow{AB}+\overrightarrow{CD}|=|\overrightarrow{TC}+\overrightarrow{CD}|=|\overrightarrow{TD}|\)

\(|\overrightarrow{AB}|+|\overrightarrow{CD}|=|\overrightarrow{TC}|+|\overrightarrow{CD}|\)

Mà theo bđt tam giác thì:

\(|\overrightarrow{TC}+\overrightarrow{CD}|\geq |\overrightarrow{TD}|\Rightarrow |\overrightarrow{AB}|+\overrightarrow{CD}|\geq |\overrightarrow{AB}+\overrightarrow{CD}|\)

Dấu "=" xảy ra khi \(T, C,D\) thẳng hàng và $C$ nằm giữa $T,D$

$\Leftrightarrow \overrightarrow{TC}, \overrightarrow{CD}$ cùng hướng 

$\Leftrightarrow \overrightarrow{AB}, \overrightarrow{CD}$ cùng hướng

Vậy với $\overrightarrow{a}, \overrightarrow{b}$ bất kỳ thì $|\overrightarrow{a}|+|\overrightarrow{b}|\geq |\overrightarrow{a}+\overrightarrow{b}|$. Dấu "=" xảy ra khi $\overrightarrow{a}, \overrightarrow{b}$ cùng hướng.

------------------

Áp dụng vào bài toán:

\(|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}|\leq |\overrightarrow{a}+\overrightarrow{b}|+|\overrightarrow{c}|\leq |\overrightarrow{a}|+|\overrightarrow{b}|+|\overrightarrow{c}|\)

Dấu "=" xảy ra khi \(\overrightarrow{a}, \overrightarrow{b}\) cùng hướng và \(\overrightarrow{a}+\overrightarrow{b}, \overrightarrow{c}\) cùng hướng 

\(\Leftrightarrow \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\) cùng hướng 

Sách Giáo Khoa
Xem chi tiết
Quang Duy
31 tháng 3 2017 lúc 21:59

Giải bài 4 trang 27 sgk Hình học 10 | Để học tốt Toán 10

Lâm Ánh Yên
Xem chi tiết
Hồng Phúc
27 tháng 12 2020 lúc 11:00

\(\overrightarrow{a}\perp\overrightarrow{b}\Rightarrow\overrightarrow{a}.\overrightarrow{b}=0\)

\(\left(2\overrightarrow{a}-\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)=2a^2+2\overrightarrow{a}.\overrightarrow{b}-\overrightarrow{a}.\overrightarrow{b}-b^2\)

\(=2a^2-b^2+\overrightarrow{a}.\overrightarrow{b}\)

\(=2.1-2+0=0\)

\(\Rightarrow\left(2\overrightarrow{a}-\overrightarrow{b}\right)\perp\left(\overrightarrow{a}+\overrightarrow{b}\right)\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
26 tháng 9 2023 lúc 23:50

a) Ta thấy \(4 = ( - 2).( - 2); - 6 = ( - 2).3 \Rightarrow \overrightarrow a  =  - 2\overrightarrow b \)

\( - 2 < 0\) nên hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng (đpcm)

b) Ta thấy \( - 8 = 4.( - 2);12 = 4.3 \Rightarrow \overrightarrow b  = 4\overrightarrow a \)

\(4 > 0\) nên hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng  (đpcm)

c) Ta thấy \(0 =  - 1.0;4 = ( - 1).( - 4) \Rightarrow \overrightarrow a  =  - \overrightarrow b \)

Suy ra hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) đối nhau (đpcm)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 0:59

Ta có: \(3\left( {\overrightarrow {AB}  + 2\overrightarrow {BC} } \right) - 2\left( {\overrightarrow {AB}  + 3\overrightarrow {BC} } \right)\)\( = 3\overrightarrow {AB}  + 3.\left( {2\overrightarrow {BC} } \right) - \left[ {2\overrightarrow {AB}  + 2.\left( {3\overrightarrow {BC} } \right)} \right]\)

\[ = 3\overrightarrow {AB}  + 6.\overrightarrow {BC}  - \left( {2\overrightarrow {AB}  + 6.\overrightarrow {BC} } \right)\]\[ = 3\overrightarrow {AB}  + 6.\overrightarrow {BC}  - 2\overrightarrow {AB}  - 6.\overrightarrow {BC} \]

\[ = \left( {3\overrightarrow {AB}  - 2\overrightarrow {AB} } \right) + \left( {6.\overrightarrow {BC}  - 6.\overrightarrow {BC} } \right) = \overrightarrow {AB} .\]

Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
19 tháng 5 2017 lúc 14:22

\(\left(\overrightarrow{a}+\overrightarrow{b}\right)^2=\left(\overrightarrow{a}+\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)\)\(=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2+2\overrightarrow{a}\overrightarrow{b}\).
\(\left(\overrightarrow{a}-\overrightarrow{b}\right)^2=\left(\overrightarrow{a}-\overrightarrow{b}\right)\left(\overrightarrow{a}-\overrightarrow{b}\right)\)\(=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2-2\overrightarrow{a}\overrightarrow{b}\).
\(\left(\overrightarrow{a}-\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)=\left|\overrightarrow{a}\right|^2+\overrightarrow{a}\overrightarrow{b}-\overrightarrow{a}\overrightarrow{b}+\left|\overrightarrow{b}\right|^2\)\(=\left|\overrightarrow{a}\right|^2-\left|\overrightarrow{b}\right|^2\).

tuấn nguyễn
Xem chi tiết
Trần Thành Phát Nguyễn
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Hồng Phúc
15 tháng 12 2020 lúc 19:52

Có vẻ không đúng.

Giả sử \(\overrightarrow{AB}+\overrightarrow{MB}+\overrightarrow{MA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MB}+\left(\overrightarrow{MA}+\overrightarrow{AB}\right)=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MB}+\overrightarrow{MB}=\overrightarrow{0}\)

\(\Leftrightarrow2\overrightarrow{MB}=\overrightarrow{0}\)

\(\Leftrightarrow M\equiv B\) (Vô lí)

Hồng Phúc
16 tháng 12 2020 lúc 20:37

Hình vẽ:

a, Chứng minh \(\overrightarrow{AB}+\overrightarrow{BM}+\overrightarrow{MA}=\overrightarrow{0}\)

Ta có \(\overrightarrow{AB}+\overrightarrow{BM}+\overrightarrow{MA}=\overrightarrow{BM}+\left(\overrightarrow{MA}+\overrightarrow{AB}\right)=\overrightarrow{BM}+\overrightarrow{MB}=\overrightarrow{0}\)

b, Gọi H là trung điểm \(MC\)

Ta có \(AM=\sqrt{AC^2-MC^2}=\sqrt{4a^2-a^2}=a\sqrt{3}\)

\(AH=\sqrt{AM^2+MH^2}=\sqrt{\left(a\sqrt{3}\right)^2+\left(\dfrac{a}{2}\right)^2}=a.\dfrac{\sqrt{13}}{2}\)

\(\left|\overrightarrow{AM}+\overrightarrow{AC}\right|=\left|2\overrightarrow{AH}\right|=2AH=a\sqrt{13}\)

c, Gọi D là trung điểm AB

\(3\overrightarrow{NA}+3\overrightarrow{NB}+2\overrightarrow{NC}=3\left(\overrightarrow{NA}+\overrightarrow{NB}\right)+2\overrightarrow{NC}=6\overrightarrow{ND}+2\overrightarrow{NC}=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{NC}=3\overrightarrow{DN}\)

Vậy N thuộc đoạn CD sao cho \(CN=\dfrac{3}{4}CD\)