a)
\(\frac{1}{2-\sqrt{x}}\) được xác định khi và chỉ khi 2-\(\sqrt{x}\)>0
<=> 2>\(\sqrt{x}\)
<=> \(\sqrt{4}>\sqrt{x}\)
\(\Leftrightarrow4>x\)
b)
\(\sqrt{-\frac{5}{x-4}}\) được xác định khi và chỉ khi x-4>0
<=> x>4
a)
\(\frac{1}{2-\sqrt{x}}\) được xác định khi và chỉ khi 2-\(\sqrt{x}\)>0
<=> 2>\(\sqrt{x}\)
<=> \(\sqrt{4}>\sqrt{x}\)
\(\Leftrightarrow4>x\)
b)
\(\sqrt{-\frac{5}{x-4}}\) được xác định khi và chỉ khi x-4>0
<=> x>4
1. Tìm x để các căn thức bậc hai sau có nghĩa:
a) \(\sqrt{\frac{2}{9-x^{ }}}\) b) \(\sqrt{x^2+2x+1}\)
c) \(\sqrt{x^2-4x}\)
2. Tìm x để các biểu thức sau có nghĩa:
a) \(\sqrt{9-x^2}\) b) \(\sqrt{\frac{1}{x^2-4}}\)
c) \(\frac{1}{\sqrt{x}+2}+\frac{\sqrt{x}}{\sqrt{x}-3}\)
3. Rút gọn các biểu thức sau:
a) \(\sqrt{\left(3-\sqrt{10}\right)^2}\) b) \(\sqrt{9-4\sqrt{5}}\)
c) \(3x-\sqrt{x^2-2x+1}\)
Rút gọn biểu thức sau :( chú ý đặt ĐKXĐ trước khi trước khi thực hiện rút gọn)
a,P= \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}\)
b, D=\(\frac{\sqrt{x}+4}{1-7\sqrt{x}}+\frac{\sqrt{x}-2}{\sqrt{x+1}}+\frac{24\sqrt{x}}{7x+6\sqrt{x}-1}\)
Tìm X để căn thức sau có nghĩa
a) \(\sqrt{1-2x}\) c) \(\sqrt{\frac{4}{5x-3}}\) e)\(\sqrt{1-x^3}\)
b) \(\sqrt{\frac{2}{1-x^2}}\) d) \(\sqrt{\frac{1}{\sqrt[3]{9-x^2}}}\) g) \(\sqrt{4x^2-9}\)
h) \(\sqrt{\frac{5-2x}{x^2+4}}\) i) \(\sqrt[3]{\frac{1-x}{1+x}}\) j) \(\frac{1}{x+\sqrt{x-4}}\)
k) \(\sqrt{\frac{3+x^2}{4-x^2}}\) l) \(\sqrt{\frac{x^2}{1+x}}\)
Cho biểu thức \(A=\left(\frac{1}{\sqrt{x+2}}+\frac{1}{\sqrt{x}-2}\right).\frac{\sqrt{x}-2}{\sqrt{x}}\)
a,Tìm ĐKXĐ và rút gọn biểu thức A
b,Tìm tất cả các giá trị của x để A>1/2
c,Tìm tất cả các giá trị của x để B=5/2.A là 1 số nguyên
tìm đkxđ của căn thức sau
\(\sqrt{\frac{3}{x^2+1}}\)
1.
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{x^2}{2x-1}}\)
b. \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\dfrac{1}{27}}\)
* Giải phương trình
a. \(\sqrt{\left(x+1\right)^2}=3\)
b. \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\dfrac{x+1}{16}}=5\)
Cho biểu thức \(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
a) Tìm ĐKXĐ :
b) Tìm giá trị của x để \(A=\frac{1}{3}\)
tìm x để căn thức sau có nghĩa
a)\(\sqrt{2x-1}\)
b)\(\sqrt{4-x}\)
c)\(\sqrt{\frac{3x+1}{2}}\)
d)\(\sqrt{x^2+1}\)
e)\(\sqrt{x-2}+\frac{1}{x^2-4}\)
f)\(\sqrt{2x-1}+\sqrt{3-x}\)
g)\(\sqrt{\frac{3}{x-1}}\)
h)\(\sqrt{x^2-6x+9}\)
a) tìm điều kiện để căn thức bậc 2 có nghĩa \(\sqrt{\frac{2x+1}{x^2+1}}\)
b) \(\sqrt[3]{-27}+\sqrt[3]{64}-\frac{\sqrt[3]{-128}}{\sqrt[3]{2}}\)