Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bò YG

1. Tìm x để các căn thức bậc hai sau có nghĩa:
a) \(\sqrt{\frac{2}{9-x^{ }}}\) b) \(\sqrt{x^2+2x+1}\)
c) \(\sqrt{x^2-4x}\)
2. Tìm x để các biểu thức sau có nghĩa:
a) \(\sqrt{9-x^2}\) b) \(\sqrt{\frac{1}{x^2-4}}\)
c) \(\frac{1}{\sqrt{x}+2}+\frac{\sqrt{x}}{\sqrt{x}-3}\)
3. Rút gọn các biểu thức sau:
a) \(\sqrt{\left(3-\sqrt{10}\right)^2}\) b) \(\sqrt{9-4\sqrt{5}}\)
c) \(3x-\sqrt{x^2-2x+1}\)

Nguyễn Lê Phước Thịnh
1 tháng 9 2020 lúc 20:18

Bài 1:

a) Để căn thức \(\sqrt{\frac{2}{9-x}}\) có nghĩa thì \(\left\{{}\begin{matrix}\frac{2}{9-x}\ge0\\9-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9-x>0\\x\ne9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 9\\x\ne9\end{matrix}\right.\Leftrightarrow x< 9\)

b) Ta có: \(x^2+2x+1\)

\(=\left(x+1\right)^2\)

\(\left(x+1\right)^2\ge0\forall x\)

nên \(x^2+2x+1\ge0\forall x\)

Do đó: Căn thức \(\sqrt{x^2+2x+1}\) xác được với mọi x

c) Để căn thức \(\sqrt{x^2-4x}\) có nghĩa thì \(x^2-4x\ge0\)

\(\Leftrightarrow x\left(x-4\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x-4\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x\ge4\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x< 4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x< 0\end{matrix}\right.\)

Bài 3:

a) Ta có: \(\sqrt{\left(3-\sqrt{10}\right)^2}\)

\(=\left|3-\sqrt{10}\right|\)

\(=\sqrt{10}-3\)(Vì \(3< \sqrt{10}\))

b) Ta có: \(\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(=\left|\sqrt{5}-2\right|\)

\(=\sqrt{5}-2\)(Vì \(\sqrt{5}>2\))

c) Ta có: \(3x-\sqrt{x^2-2x+1}\)

\(=3x-\sqrt{\left(x-1\right)^2}\)

\(=3x-\left|x-1\right|\)

\(=\left[{}\begin{matrix}3x-\left(x-1\right)\left(x\ge1\right)\\3x-\left(1-x\right)\left(x< 1\right)\end{matrix}\right.\)

\(=\left[{}\begin{matrix}3x-x+1\\3x-1+x\end{matrix}\right.=\left[{}\begin{matrix}2x+1\\4x-1\end{matrix}\right.\)


Các câu hỏi tương tự
Huyền Phạm
Xem chi tiết
Ly Ly
Xem chi tiết
Thiên Yết
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Quynh Existn
Xem chi tiết
Mai Linh
Xem chi tiết
Ngoan Tạ
Xem chi tiết
Quynh Existn
Xem chi tiết
Quynh Existn
Xem chi tiết