Chương III - Hệ hai phương trình bậc nhất hai ẩn

Nguyễn Tuấn Minh

a) Chứng minh với mọi số thực a,b,c a có \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}\)

b) Cho 3 số dương x,y,z thỏa mãn điều kiện x+y+z=3/4. Chứng minh:

\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+zx\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)\ge9\)

Đẳng thức xảy ra khi nào?

 Mashiro Shiina
6 tháng 11 2018 lúc 21:24

\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)\)

\(=6\left(x^2+y^2+z^2\right)+12\left(xy+yz+xz\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)-2\left(xy+yz+xz\right)\)

\(=6\left(x+y+z\right)^2+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{2z+x+y}\right)-2\left(xy+yz+xz\right)\)

\(\ge6\left(x+y+z\right)^2+2.\dfrac{\left(1+1+1\right)^2}{2x+y+z+x+2y+z+2z+x+y}-2\left(xy+yz+xz\right)\)

\(=6\left(x+y+z\right)^2+\dfrac{18}{4\left(x+y+z\right)}-2\left(xy+yz+xz\right)\)

\(\ge6\left(x+y+z\right)^2+\dfrac{18}{4\left(x+y+z\right)}-\dfrac{2}{3}\left(x+y+z\right)^2\)

\(=6.\left(\dfrac{3}{4}\right)^2+\dfrac{18}{4.\dfrac{3}{4}}-\dfrac{2}{3}.\left(\dfrac{3}{4}\right)^2=9\)

\("="\Leftrightarrow x=y=z=\dfrac{1}{4}\)

Bình luận (0)
Diệp Kì Thiên
6 tháng 11 2018 lúc 21:18

a) ab+bc+ca\(\le\dfrac{\left(a+c+b\right)^2}{3}\)

\(\Leftrightarrow3ab+3bc+3ac\le a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Leftrightarrow ab+bc+ac\le a^2+b^2+c^2\)

\(\Leftrightarrow2ab+2bc+2ca\le2a^2+2b^2+2c^2\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng \(\forall a,b,c\)

Bình luận (0)
TNA Atula
6 tháng 11 2018 lúc 21:28

a) 3.(ab+bc+ac)≤a2+b2+c2+2ab+2bc+2ac

<=> \(a^2+b^2+c^2-ab-bc-ac\ge0\)

<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

<=> (a-b)2+(b-c)2+(a-c)2≥0 ( luon dung voi moi a,b,c)

b) ap dung ket qua tren va vế sau bn xem bài giải của mk ở trên

Bình luận (1)

Các câu hỏi tương tự
SHIZUKA
Xem chi tiết
Hoàng Duy Khánh Phan
Xem chi tiết
Nguyễn Võ Thảo VY
Xem chi tiết
Oriana.su
Xem chi tiết
Đinh Doãn Nam
Xem chi tiết
Vũ Huyền
Xem chi tiết
Nguyễn Võ Thảo VY
Xem chi tiết
Oriana.su
Xem chi tiết
Thái Viết Nam
Xem chi tiết